精英家教网 > 高中数学 > 题目详情
双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=2,F1,F2是左,右焦点,过F2作x轴的垂线与双曲线在第一象限交于P点,直线F1P与右准线交于Q点,已知
F1P
F2Q
=-
15
64

(1)求双曲线的方程;
(2)设过F1的直线MN分别与左支,右支交于M、N,线段MN的垂线平分线l与x轴交于点G(x0,0),若1≤|NF2|<3,求x0的取值范围.
分析:(1)因为双曲线的离心率e=2,所以可得含a,c的等式,再由
F1P
F2Q
=-
15
64
,可求出a值,结合a,b,c的关系式,就能求出b,双曲线的方程可知.
(2)因为直线MN过F1点,可设出点斜式方程,与双曲线方程联立,求出两根之和,两根之积,再因为线段MN的垂线平分线l与MN斜率互为负倒数,且过MN中点,所以线段MN的垂线平分线l方程可以写出,再因为可用线段MN的垂线平分线l与x轴交于点G(x0,0),可用含k的式子表示x0,再根据1≤|NF2|<3,求x0的范围即可.
解答:解:(1)∵e=2⇒c=2a,F1(-2a,0),F2(2a,0),P(2a,m)m=|PF2|=e•2a-a=3a∴P(2a,3a),
设Q(
a
2
,t)
∵F1,Q,F2三点共线∴t=
15a
8
F1Q
F2Q
=-
15
64
得a2=1
x2-
y2
3
=1

(2)设MN:y=k(x+2)代入3x2-y2=3得:(3-k2)x2-4k2x-4k2-3=0△>0?k2+1>0
设M(x1,y1),N(x2,y2
x1+x2=
4k2
3-k2
l:y-
6k
3-k2
=-
1
k
(x-
2k2
3-k2
)

∵l过Q(x0,0)∴x0=
8k2
3-k2
∵|NF2|=2x1-1且|NF2|∈[1,3)
∴x1∈[1,2)
y12=k2(x1+2)2
y12=3x12-3
k2=
3x12-3
(x1+2)2

f(x1)=
x12-1
(x1+2)2
f′(x1)=
2(2x1+1)
(x1+2)3
>0

∴f(x1)在x1∈[1,2)上单调递增
得 k2∈[0,
9
16
)
x0=8(-1+
3
3-k2
)
x0∈[0,
24
13
)
点评:本题考查了双曲线方程的求法,以及直线与双曲线位置关系的判断,做题时要认真分析.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)
的中心和左焦点,点P为双曲线右支上的任意一点,则
OP
FP
的取值范围为(  )
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1(a>0)
的一条准线方程为x=
3
2
,则a等于
 
,该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆C的圆心为双曲线
x2
a2
-y2=1(a>0)
的左焦点,且与此双曲线的渐近线相切,若圆C被直线l:x-y+2=0截得的弦长等于
2
,则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的一点,并且P点与右焦点F′的连线垂直x轴,则线段OP的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1
的一个焦点坐标为(-
3
,0)
,则其渐近线方程为(  )
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步练习册答案