精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=2sinωx),其中常数ω0

1)令ω=1,判断函数的奇偶性,并说明理由;

2)令ω=2,将函数y=fx)的图象向左平移个单位,再向上平移1个单位,得到函数y=gx)的图象,对任意a∈R,求y=gx)在区间[aa+10π]上零点个数的所有可能值.

【答案】1Fx)既不是奇函数,也不是偶函数(22120

【解析】

1)特值法:ω1时,写出fx)、Fx),求出F)、F),结合函数奇偶性的定义可作出正确判断;

2)根据图象平移变换求出gx),令gx)=0可得gx)可能的零点,而[aa+10π]恰含10个周期,分a是零点,a不是零点两种情况讨论,结合图象可得gx)在[aa+10π]上零点个数的所有可能值.

1fx)=2sinx

Fx)=fx+fx)=2sinx+2sinx)=2sinx+cosx),

F)=2F)=0F)≠F),F)≠﹣F),

所以,Fx)既不是奇函数,也不是偶函数.

2fx)=2sin2x

yfx)的图象向左平移个单位,再向上平移1个单位后得到y2sin2x+1的图象,所以gx)=2sin2x+1

gx)=0,得xkπxkπkz),

因为[aa+10π]恰含10个周期,所以,当a是零点时,在[aa+10π]上零点个数21

a不是零点时,a+kπkz)也都不是零点,区间[a+kπa+k+1π]上恰有两个零点,故在[aa+10π]上有20个零点.

综上,ygx)在[aa+10π]上零点个数的所有可能值为2120

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆与直线,动直线过定点.

1)若直线与圆相切,求直线的方程;

2)若直线与圆相交于两点,点MPQ的中点,直线与直线相交于点N.探索是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小威初三参加某高中学校的数学自主招生考试,这次考试由十道选择题组成,得分要求是:做对一道题得1分,做错一道题扣去1分,不做得0分,总得分7分就算及格,小威的目标是至少得7分获得及格,在这次考试中,小威确定他做的前六题全对,记6分,而他做余下的四道题中,每道题做对的概率均为p考试中,小威思量:从余下的四道题中再做一题并且及格的概率从余下的四道题中恰做两道并且及格的概率他发现只做一道更容易及格.

(1)设小威从余下的四道题中恰做三道并且及格的概率为,从余下的四道题中全做并且及格的概率为

(2)由于p的大小影响,请你帮小威讨论:小威从余下的四道题中恰做几道并且及格的概率最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥E﹣ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,
(1)求证:AE∥平面BDF;
(2)求证:平面BDF⊥平面ACE;
(3)2AE=EB,在线段AE上找一点P,使得二面角P﹣DB﹣F的余弦值为 , 求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2sin(2x﹣)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,则b的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3名男生、3名女生站成一排:

(1)女生都不站在两端,有多少不同的站法?

(2)三名男生要相邻,有多少种不同的站法?

(3)三名女生互不相邻,三名男生也互不相邻,有多少种不同的站法?

(4)女生甲,女生乙都不与男生丙相邻,有多少种不同的站法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构为了调查某市同时符合条件(条件:营养均衡,作息规律;条件:经常锻炼,劳逸结合)的高中男生的体重(单位:)与身高(单位: )是否存在较好的线性关系,该机构搜集了位满足条件的高中男生的数据,得到如下表格:

身高/

体重/

根据表中数据计算得到关于的线性回归方程对应的直线的斜率为.

(1)求关于的线性回归方程(精确到整数部分);

(2)已知,且当时,回归方程的拟合效果较好。试结合数据,判断(1)中的回归方程的拟合效果是否良好?

(3)该市某高中有位男生同时符合条件,将这位男生的身高(单位:)的数据绘制成如下的茎叶图。利用(1)中的回归方程估计这位男生的体重未超过的所有男生体重(单位:)的平均数(结果精确到整数部分).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,an+1=an+n,利用如图所示的程序框图计算该数列的第10项,则判断框中应填的语句是(

A.n>10
B.n≤10
C.n<9
D.n≤9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分) 某居民小区有两个相互独立的安全防范系统(简称系统),系统在任意时刻发生故障的概率分别为

(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求的值;

(Ⅱ)设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望

查看答案和解析>>

同步练习册答案