精英家教网 > 高中数学 > 题目详情

【题目】已知公比小于1的等比数列{an}的前n项和为Sn , a1= 且13a2=3S3(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=nan , 求数列{bn}的前项n和Tn

【答案】
(1)解:设等比数列{an}的公比为q<1,∵a1= ,且13a2=3S3(n∈N*).

∴13a1q=3a1(1+q+q2),化为:3q2﹣10q+3=0,q<1,解得q=

∴an= =2×


(2)解:bn=nan=

∴数列{bn}的前项n和Tn= +…+

=2 +…+(n﹣1)× +n×

=2 =2 =1﹣

∴Tn=


【解析】(1)设等比数列{an}的公比为q<1,根据a1= ,且13a2=3S3(n∈N*).可得13a1q=3a1(1+q+q2),解出即可得出.(2)bn=nan= .利用“错位相减法”与等比数列的前项n和公式即可得出.
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax-1(x≥0).其中a>0,a≠1.

(1)若f(x)的图象经过点(,2),求a的值;

(2)求函数y=f(x)(x≥0)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线:, 上一动点, 是焦点, .

Ⅰ)求的取值范围;

Ⅱ)过点的直线相交于两点,求使得面积最小时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0, ),则函数g(x)=cos(2x﹣φ)的图象(
A.关于点( ,0)对称
B.可由函数f(x)的图象向右平移 个单位得到
C.可由函数f(x)的图象向左平移 个单位得到
D.可由函数f(x)的图象向左平移 个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面为梯形,,且

若点上一点且,证明:平面

二面角的大小;

在线段上是否存在一点,使得?若存在,求出的长;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,△ABD是边长为2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=

(1)求证:PA⊥BD;
(2)若PC=BC,求二面角A﹣BP﹣D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某专营店经销某商品,当售价不高于10元时,每天能销售100件,当价格高于10元时,每提高1元,销量减少3件,若该专营店每日费用支出为500元,用x表示该商品定价,y表示该专营店一天的净收入(除去每日的费用支出后的收入).

(1)把y表示成x的函数;

(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合P={xR|x2-3x+b=0},Q={xR|(x+1)(x2+3x-4)=0}.

(1)若b=4,存在集合M使得PMQ

(2)若PQ,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求曲线在点(1,f(1))处的切线方程;

2)求经过点A1,3)的曲线的切线方程.

查看答案和解析>>

同步练习册答案