【题目】根据以往的成绩记录,甲、乙两名队员射击中靶环数(环数为整数)的频率分布情况如图所示.假设每名队员每次射击相互独立.
(Ⅰ)求图中a的值;
(Ⅱ)队员甲进行2次射击.用频率估计概率,求甲恰有1次中靶环数大于7的概率;
(Ⅲ)在队员甲、乙中,哪一名队员的射击成绩更稳定?(结论无需证明)
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资,两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为,产品的利润与投资金额的函数关系为.(注:利润与投资金额单位:万元)
(1)该公司已有100万元资金,并全部投入,两种产品中,其中万元资金投入产品,试把,两种产品利润总和表示为的函数,并写出定义域;
(2)试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
【答案】(1);(2)20,28.
【解析】
(1)设投入产品万元,则投入产品万元,根据题目所给两个产品利润的函数关系式,求得两种产品利润总和的表达式.(2)利用基本不等式求得利润的最大值,并利用基本不等式等号成立的条件求得资金的分配方法.
(1)其中万元资金投入产品,则剩余的(万元)资金投入产品,
利润总和为: ,
(2)因为,
所以由基本不等式得:,
当且仅当时,即:时获得最大利润28万.
此时投入A产品20万元,B产品80万元.
【点睛】
本小题主要考查利用函数求解实际应用问题,考查利用基本不等式求最大值,属于中档题.
【题型】解答题
【结束】
20
【题目】已知曲线.
(1)求曲线在处的切线方程;
(2)若曲线在点处的切线与曲线相切,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.
(Ⅰ)这5人中男生、女生各多少名?
(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,在区间上有最大值,有最小值,设.
(1)求的值;
(2)不等式在时恒成立,求实数的取值范围;
(3)若方程有三个不同的实数解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.
(Ⅰ)求证:平面ADE⊥平面BDEF;
(Ⅱ)若二面角CBFD的大小为60°,求CF与平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p与听课时间t之间的关系满足如图所示的曲线.当t∈(0,14]时,曲线是二次函数图象的一部分,当t∈[14,40]时,曲线是函数(且)图象的一部分.根据专家研究,当注意力指数p大于等于80时听课效果最佳.
(1)试求的函数关系式;
(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=.
(1)试将污水净化管道的长度L表示为的函数,并写出定义域;
(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com