精英家教网 > 高中数学 > 题目详情
4.已知α是第二象限角,且7α与2α的终边相同,则α=144°+k•360°,k∈Z.

分析 由题意可得7α-2α=n•360°,n为整数,求出α=n•72°(n∈Z),然后结合α所在象限得答案.

解答 解:7α与2α的终边相同,
那么:7α-2α=n•360°(n∈Z),
则5α=n•360°,
α=n•72°(n∈Z),
∵α是第二象限角,
∴当n=2时,α=144°在第二象限.
∴α=144°+k•360°,k∈Z.
故答案为:144°+k•360°,k∈Z.

点评 本题考查终边相同角的概念,考查了象限角和轴线角,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数y=-$\frac{3}{x}$,x∈[3,4)的值域为[-1,$-\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=3x-5的定义域用区间可表示为(-∞,+∞),函数y=$\frac{3-x}{2x+4}$的定义域用区间可表示为(-∞,-2)∪(-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=lgsin$\frac{x}{2}$的定义域是(4kπ,2π+4kπ),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明:$\frac{2sin(α+nπ)cos(α-nπ)}{sin(α+nπ)+sin(α-nπ)}$=(-1)ncosα,n∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.cos(-40°)cos20°-sin(-40°)•sin(-20°)等于.
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}构成空间中的一个基底,$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$是$\overrightarrow{p}$=x1$\overrightarrow{a}$+y1$\overrightarrow{b}$+z1$\overrightarrow{c}$与$\overrightarrow{q}$=x2$\overrightarrow{a}$+y2$\overrightarrow{b}$+z2$\overrightarrow{c}$共线的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sinα=$\frac{1}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),求sin(α+β)和cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图是偶函数y=f(x)的局部图象,根据图象所给信息,下列结论正确的是(  )
A.f(-2)-f(6)=0B.f(-2)-f(6)<0C.f(-2)+f(6)=0D.f(-2)-f(6)>0

查看答案和解析>>

同步练习册答案