【题目】如图,三棱柱中,侧面为菱形,的中点为O,且平面.
(1)证明:;
(2)若,,,求到平面ABC的距离.
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD是正方形,PA⊥平面ABCD,E,F分别是线段AD,PB的中点,PA=AB=1.
(1)证明:EF∥平面PDC;
(2)求点F到平面PDC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数集(,)具有性质:对任意的、(),与两数中至少有一个属于.
(1)分别判断数集与是否具有性质,并说明理由;
(2)证明:,且;
(3)证明:当时,、、、、成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:, 过点的直线:与椭圆交于M、N两点(M点在N点的上方),与轴交于点E.
(1)当且时,求点M、N的坐标;
(2)当时,设,,求证:为定值,并求出该值;
(3)当时,点D和点F关于坐标原点对称,若△MNF的内切圆面积等于,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线的参数方程为(,为参数),曲线上的点对应的参数.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.射线与曲线交于点.
(1)求曲线的直角坐标方程;
(2)若点,在曲线上,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在四棱锥S﹣AFCD中,平面SCD⊥平面AFCD,∠DAF=∠ADC=90°,AD=1,AF=2DC=4,,B,E分别为AF,SA的中点.
(1)求证:平面BDE∥平面SCF
(2)求二面角A﹣SC﹣B的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左右焦点分别为,,左顶点为,点在椭圆上,且的面积为.
(1)求椭圆的方程;
(2)过原点且与轴不重合的直线交椭圆于,两点,直线分别与轴交于点,,.求证:以为直径的圆恒过交点,,并求出面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com