精英家教网 > 高中数学 > 题目详情

【题目】阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.

调查结果如下:

0项

1项

2项

3项

4项

5项

5项以上

理科生(人)

1

10

17

14

14

10

4

文科生(人)

0

8

10

6

3

2

1

(1)完成如下列表,并判断是否由的把握认为.了解阿基米德与选择文理科有关?

比较了解

不太了解

合计

理科生

p>

文科生

合计

(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.

(i)求抽取的文科生和理科生的人数;

(ii)从10人的样本中随机抽取两人,求两人都是文科生的概率.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

【答案】(1)见解析;(2)(i)文科生3人,理科生7人 (ii)

【解析】

(1)依题意填写列联表,根据公式,求得的值,即可得到结论.

(2)(i)按照文理科采用分层抽样的方法,即可得到文科生人数是人,理科生人数是人.

(ii)记“两人都是文科生”为事件,记样本中的3名文科生为,7名理科生为从10人的样本中随机抽取两人,利用列举法求得基本事件的总数,利用古典概型的概率公式,即可求解.

(1)依题意填写的列联表如下:

比较了解

不太了解

合计

理科生

42

28

70

文科生

12

18

30

合计

54

46

100

计算

没有的把握认为,了解阿基米德与选择文理科有关.

(2)(i)抽取的文科生人数是(人),理科生人数是(人).

(ii)记“两人都是文科生”为事件,记样本中的3名文科生为,7名理科生为从10人的样本中随机抽取两人,则所有的基本事件有:

,共45种,

两人都是文科生的基本事件有:,共3种,

故由古典概型得,两人都是文科生的概率是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)讨论的单调性;

2)设,若上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼奥斯发现:平面上到两定点距离之比为常数的点的轨迹是一个圆心在直线上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体中,,点在棱上,,动点满足.若点在平面内运动,则点所形成的阿氏圆的半径为________;若点在长方体内部运动,为棱的中点,的中点,则三棱锥的体积的最小值为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天津市某学校组织教师进行学习强国知识竞赛,规则为:每位参赛教师都要回答3个问题,且对这三个问题回答正确与否相互之间互不影响,若每答对1个问题,得1分;答错,得0分,最后按照得分多少排出名次,并分一、二、三等奖分别给予奖励.已知对给出的3个问题,教师甲答对的概率分别为p.若教师甲恰好答对3个问题的概率是,则________;在前述条件下,设随机变量X表示教师甲答对题目的个数,则X的数学期望为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的零点个数;

2)设,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)证明:在区间上有且仅有个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求证:当x(0,π]时,f(x)<1

2)求证:当m2时,对任意x0(0,π] ,存在x1(0,π]x2(0,π](x1x2)使g(x1)=g(x2)=f(x0)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC的对边分别为abc,若a=5sinB),c=5O为△ABC的外心,G为△ABC的重心,则OG的最小值为( )

A.1B.C.1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对于函数定义域内任意的两个自变量的值,当时,都有,且存在两个不相等的自变量值,使得,就称为定义域上的不严格的增函数”.下列所给的四个函数中为不严格增函数的是(

A.B.

C.D..

查看答案和解析>>

同步练习册答案