精英家教网 > 高中数学 > 题目详情
20.若sin(π-α)=$\frac{3\sqrt{10}}{10}$,且α是锐角,则tan2α=-$\frac{3}{4}$.

分析 利用同角三角函数的基本关系求得cosα的值,可得tanα的值,再利用二倍角的正切公式求得tan2α的值.

解答 解:∵sin(π-α)=sinα=$\frac{3\sqrt{10}}{10}$,且α是锐角,
∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{\sqrt{10}}{10}$,∴tanα=$\frac{sinα}{cosα}$=3,
则tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=-$\frac{3}{4}$,
故答案为:-$\frac{3}{4}$.

点评 本题主要考查同角三角函数的基本关系,二倍角的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2$\sqrt{3}$,则线段NB的长度是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(x,-1),$\overrightarrow{b}$=(x-2,3),$\overrightarrow{c}$=(1-2x,6).
(1)若$\overrightarrow{a}$⊥(2$\overrightarrow{b}$+$\overrightarrow{c}$),求|$\overrightarrow{b}$|;
(2)若$\overrightarrow{a}$•$\overrightarrow{b}$<0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(sinωx,2$\sqrt{3}$sinωx-cosωx),$\overrightarrow{b}$=(sinωx,cosωx),若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-λ的图象关于直线x=π对称,其中ω,λ为常数,且ω∈($\frac{1}{2}$,1).
(2)求函数f(x)的最小正周期;
(2)当λ=1时,若x∈[0,$\frac{π}{2}$],求f(x)的最大值和最小值,并求相应的x值;
(3)当x∈[0,$\frac{3π}{5}$],函数f(x)有两个零点,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续的时间为50秒,若一行人来到该路口遇到红灯,则至少需要等待20秒才出现绿灯的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}中,a1+a9=16,a4=1,则a6的值是(  )
A.64B.31C.30D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l经过点(1,-2),且与直线m:4x-3y+1=0平行;
(1)求直线l的方程;
(2)求直线l被圆x2+y2=9所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的体积是$\frac{32}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.证明不等式:2a+2b-4<ab,其中的a,b∈(0,2).

查看答案和解析>>

同步练习册答案