精英家教网 > 高中数学 > 题目详情
17.在直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ=1.直线l与曲线C交于A,B两点.
(I)求|AB|的长;
(II)若P点的极坐标为$({1,\frac{π}{2}})$,求AB中点M到P的距离.

分析 (I)曲线C的极坐标方程为ρ2•cos2θ=1,利用倍角公式可得ρ2(cos2θ-sin2θ)=1,再利用互化公式即可得出普通方程.直线l的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t为参数),化为标准形式:$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$,代入上述普通方程可得:t2-2t-4=0.利用|AB|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$即可得出.
(II)P点的极坐标为$({1,\frac{π}{2}})$,化为直角坐标P(0,1).AB中点M对应的参数t=$\frac{{t}_{1}+{t}_{2}}{2}$=1,可得M$(\frac{\sqrt{3}}{2},\frac{3}{2})$,可得点M到P的距离.

解答 解:(I)曲线C的极坐标方程为ρ2•cos2θ=1,∴ρ2(cos2θ-sin2θ)=1,即x2-y2=1.
直线l的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t为参数),化为标准形式:$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$,
代入上述普通方程可得:t2-2t-4=0.
则t1+t2=2,t1t2=-4.
∴|AB|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{4-4×(-4)}$=2$\sqrt{5}$.
(II)P点的极坐标为$({1,\frac{π}{2}})$,化为直角坐标P(0,1).
AB中点M对应的参数t=$\frac{{t}_{1}+{t}_{2}}{2}$=1,∴M$(\frac{\sqrt{3}}{2},\frac{3}{2})$,点M到P的距离d=1.

点评 本题考查了极坐标方程化为直角坐标方程、直线参数方程的应用,考查了数形结合方法\推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设P为直线x-y=0上的一动点,过P点做圆(x-4)2+y2=2的两条切线,切点分别为A,B,则∠APB的最大值60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.为了调查患慢性气管炎是否与吸烟有关,调查了100名50岁以下的人,调查结果如下表:
患慢性气管炎未患慢性气管炎合计
吸烟202040
不吸烟55560
合计2575100
根据列联表数据,有99.9%的把握(填写相应的百分比)认为患慢性气管炎与吸烟有关.
附:
P(K2≥k)  0.0500.0100.001
k   3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如示,则f(1)+f(2)+f(3)+…+f(210)的值等于(  )
A.$\sqrt{2}$B.$2+2\sqrt{2}$C.$2+\sqrt{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在极坐标系中,曲线C1的极坐标方程为ρ=10cosθ-6$\sqrt{3}$sinθ,现以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系,曲线C2的参数方程为$\left\{\begin{array}{l}{x=6+2\sqrt{3}t}\\{y=-\sqrt{3}-t}\end{array}\right.$(t为参数).
(1)求曲线C1的直角坐标方程和曲线C2的普通方程;
(2)若曲线C1、C2交于A、B两点,以AB为边作等边△ABD,求△ABD外接圆的圆心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知(1-2x)n=a0+a1x+a2x2+…+anxn(n∈N+),且a2=60,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的导数
(1)y=(x+1)(x+2)(x+3)
(2)$y=\frac{2sinx}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是一个实物图形,则它的侧视图大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中的假命题是(  )
A.存在x∈R,lgx=0B.存在x∈R,tanx=1C.任意的x∈R,x3>0D.任意的x∈R,2x>0

查看答案和解析>>

同步练习册答案