精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:x∈[1,2],x2≥a;命题q:x∈R,x2+2ax+2﹣a=0,若命题p∧q是真命题,则实数a的取值范围是(
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1

【答案】A
【解析】解:命题p:x2在[1,2]上的最小值为1,∴a≤1;命题q:方程x2+2ax+2﹣a=0有解,
∴△=4a2﹣4(2﹣a)≥0,解得a≥1,或a≤﹣2;
若命题p∧q是真命题,则p,q都是真命题;
,∴a=1,或a≤﹣2;
∴实数a的取值范围是{a|a≤﹣2,或a=1};
故选A.
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a1=3,an=2an1+(t+1)2n+3m+t(t,m∈R,n≥2,n∈N*
(1)t=0,m=0时,求证: 是等差数列;
(2)t=﹣1,m= 是等比数列;
(3)t=0,m=1时,求数列{an}的通项公式和前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间四边形ABCD的两条对角线的长AC=6,BD=8,AC与BD所成的角为30o , E,F,G,H分别是AB,BC,CD,DA的中点,求四边形EFGH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位有老年人30人,中年人90人,青年人60人,为了调查他们的身体健康状况,采用分层抽样的方法从他们中间抽取一个容量为36的样本,则应抽取老年人的人数是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点 为椭圆的半焦距,且,过点作两条互相垂直的直线 与椭圆分别交于另两点

(1)求椭圆的方程;

(2)若直线的斜率为,求的面积;

(3)若线段的中点在轴上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是圆的直径,点在圆上,矩形所在的平面垂直于圆所在的平面,
(1)证明:平面⊥平面
(2)当三棱锥的体积最大时,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱与四边形BDEF相交于BD, 平面ABCD,DE//BF,BF=2DE,AF⊥FC,M为CF的中点,

(I)求证:GM//平面CDE;

(II)求证:平面ACE⊥平面ACF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数

(I)求函数的单调区间;

(II)设,已知函数上是增函数.

(1)研究函数上零点的个数;

(ii)求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求函数的极值;

(Ⅱ)若,,,使得),求实数的取值范围.

查看答案和解析>>

同步练习册答案