精英家教网 > 高中数学 > 题目详情
矩阵M满足
12
21
M=
10
56
,设矩阵A=M5,求向量α=
5
1
经过矩阵A变换后得到的向量β.
考点:几种特殊的矩阵变换
专题:选作题,矩阵和变换
分析:先计算M=
34
-1-2
,再计算A=M5,即可求向量α=
5
1
经过矩阵A变换后得到的向量β.
解答: 解:∵
12
21
M=
10
56

∴M=
34
-1-2
,∴M2=
34
-1-2
2=
54
-10

∴A=M5=
34
-1-2
5=
8344
-19-12

β
=
8344
-19-12
5
1
=
459
-107
点评:本题考查矩阵变换,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)满足g(x)=x-
4
x

(1)判断函数g(x)的奇偶性;
(2)求g(x)在区间[1,8]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A、B、C满足条件
sin2A-(sinB-sinC)2
sinBsinC
=1,则角A等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算log36-log32+4 
1
2
-3 log34的结果为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={-2,0,1,2},N={x||2x-1|>1},则M∩N=(  )
A、{-2,1,2}
B、{0,2}
C、{-2,2}
D、[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
1-x
ax
+lnx,(a≠0)
(1)若函数f(x)在[1,+∞)上为增函数,求a的取值范围;
(2)当a=1时,求f(x)在区间(
1
2
,2)
上的值域;
(3)当a=1时,问:是否存在正整数M,使得当自然数n≥M时,恒有lnn>
1
2
+
1
3
+
1
4
+…+
1
n
成立?若存在,求出M的最小值,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的极坐标方程是ρcosθ+ρsinθ-m=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,又知曲线C的参数方程是
x=2cosθ
y=sinθ
(θ为参数,θ∈[0,
3
]
),如果直线l与曲线C有且仅有一个公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:①?s,t∈R有f(s+t)=f(s)+f(t)+st;②f(3)=6;③?x>0,有f(x)>0.
(1)求f(1)的值;
(2)证明;函数f(x)在(0,+∞)上单调递增;
(3)求满足f(2x)+f(2x+1)<4的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:A1,A2,A3,A4,A5,A6的横纵坐标分别对应数列{an}(n∈N*)的前12项,如表所示,按如此规律下去,则a2011+a2012+a2013=
 

a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6

查看答案和解析>>

同步练习册答案