精英家教网 > 高中数学 > 题目详情

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

【答案】1

23333/小时

【解析】

1)由题意:当0≤x≤20时,vx=60;当20x≤200时,设vx=ax+b

再由已知得,解得

故函数vx)的表达式为

2)依题并由(1)可得

0≤x20时,fx)为增函数,故当x=20时,其最大值为60×20=1200

20≤x≤200时,

当且仅当x=200﹣x,即x=100时,等号成立.

所以,当x=100时,fx)在区间(20200]上取得最大值

综上所述,当x=100时,fx)在区间[0200]上取得最大值为

即当车流密度为100/千米时,车流量可以达到最大值,最大值约为3333/小时.

答:(1)函数vx)的表达式

2)当车流密度为100/千米时,车流量可以达到最大值,最大值约为3333/小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)若的图象在点处的切线方程为,求在区间上的最大值和最小值;

2)若在区间上不是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为15°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在各棱长均为4的直四棱柱底面为菱形 为棱上一点.

1求证:平面平面

2求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点A、B、C是抛物线y2=4x上不同的三点,若点F(1,0)满足 ,则△ABF面积的最大值为(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求实数的值;2)判断并证明上的单调性;

3)若对任意实数,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且定义域为.

(1)求关于的方程上的解;

(2)若在区间上单调减函数,求实数的取值范围;

(3)若关于的方程上有两个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,中点.

(1)求点到平面的距离;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线l1:y=x,l2:y=x+2与圆C:x2+y2﹣2mx﹣2ny=0的四个交点把圆C分成的四条弧长相等,则m=(
A.0或1
B.0或﹣1
C.1或﹣1
D.0

查看答案和解析>>

同步练习册答案