【题目】如图,点是平行四边形所在平面外一点, 平面, ,, .
(1)求证:平面平面;
(2)求二面角的余弦值.
【答案】(Ⅰ)见解析(Ⅱ)
【解析】试题分析:(Ⅰ)设中点, 交于,连, ,可先证明平面,再证明四边形是平行四边形,则,从而平面,进而利用面面垂直的判定定理可得结论;(Ⅱ)以, , 所在直线分别为轴, 轴, 轴建立如图所示的空间直角坐标系,求出平面的一个法向量与平面的一个法向量,利用空间向量夹角余弦公式求解即可.
试题解析:(Ⅰ)证明:取中点,连交于,连, .
在菱形中, ,
∵平面, 平面,
∴,
又, , 平面,
∴平面,
∵, 分别是, 的中点,
∴, ,
又, ,
∴, ,
∴四边形是平行四边形,则,
∴平面,
又平面,
∴平面平面.
(Ⅱ)解:由(Ⅰ)得平面,则, , 两两垂直,以, , 所在直线分别为轴, 轴, 轴建立如图所示的空间直角坐标系,
设,则, , , ,
, , ,
设是平面的一个法向量,则即
取,得, ,∴,
设是平面的一个法向量,
同理得, .
∴,
∴二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线的参数方程是(为参数),曲线的极坐标方程是.
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)设直线与曲线相交于,两点,点为的中点,点的极坐标为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系内,动点与两定点, 连线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设点, 是轨迹上相异的两点.
(Ⅰ)过点, 分别作抛物线的切线, , 与两条切线相交于点,证明: ;
(Ⅱ)若直线与直线的斜率之积为,证明: 为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=2,点E、F分别在边AB、DC上,M为AD的中点,且 =0,则△MEF的面积的取值范围为( )
A.
B.[1,2]
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间共有名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ) 根据茎叶图计算样本均值;
(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间名工人中有几名优秀工人;
(Ⅲ) 从该车间名工人中,任取2人,求恰有1名优秀工人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,动点, 分别在轴, 轴上运动, , 为平面上一点, ,过点作平行于轴交的延长线于点.
(Ⅰ)求点的轨迹曲线的方程;
(Ⅱ)过点作轴的垂线,平行于轴的两条直线, 分别交曲线于, 两点(直线不过),交于, 两点.若线段中点的轨迹方程为,求与的面积之比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com