用数学归纳法证明,若f(n)=1+++…+,则n+f(1)+f(2)+…+f(n-1)=n·f(n)(n≥2,且n∈N+).
思路解析:(1)当n=2时,左边=2+f(1)=2+1=3,
右边=2·f(2)=2×(1+)=3,左边=右边,等式成立.
(2)假设n=k时等式成立,即
k+f(1)+f(2)+…+f(k-1)=kf(k).
由已知条件可得f(k+1)=f(k)+,
右边=(k+1)·f(k+1)(先写出右边,便于左边对照变形).
当n=k+1时,左边=(k+1)+f(1)+f(2)+…+f(k-1)+f(k)
=[k+f(1)+f(2)+…+f(k-1)]+1+f(k)(凑成归纳假设)
=kf(k)+1+f(k)(利用假设)
=(k+1)·f(k)+1
=(k+1)·[f(k+1)-]+1
=(k+1)·f(k+1)=右边.
∴当n=k+1时,等式也成立.
由(1)(2)可知,对一切n≥2的正整数等式都成立.
科目:高中数学 来源: 题型:
n(n+1)(2n+1) |
6 |
n(n+1)(n+2)(an+b) |
12 |
查看答案和解析>>
科目:高中数学 来源: 题型:
an2+3 | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com