精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥的展开图如图二,其中四边形为边长等于的正方形,均为正三角形,在三棱锥中:

1)证明:平面平面

2)若的中点,求二面角的余弦值.

【答案】(1)见解析(2)

【解析】

1)设的中点为,连接,由边长关系得,从而可得平面,即可证明平面平面

2)由(1)问可知平面,所以以所在直线分别为轴,轴,轴建立如图示空间直角坐标系,利用向量法求出平面和平面的法向量,再利用二面角的公式即可得到二面角的余弦值。

1)设的中点为,连接

由题意,得

因为在中,的中点,所以

因为在中,

,所以

因为平面,所以平面

平面,所以平面平面

2)由(1)问可知平面,所以,于是以所在直线分别为轴,轴,轴建立如图示空间直角坐标系,

设平面的法向量为,则

得:.令,得,即

设平面的法向量为,由得:

,令,得,即

.由图可知,二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有0123456789共十个数字.

1)可以组成多少个无重复数字的三位数?

2)组成无重复数字的三位数中,315是从小到大排列的第几个数?

3)可以组成多少个无重复数字的四位偶数?

4)选出一个偶数和三个奇数,组成无重复数字的四位数,这样的四位数共有多少个?

5)如果一个数各个数位上的数字从左到右按由大到小的顺序排列,则称此正整数为“渐减数”, 那么由这十个数字组成的所有“渐减数”共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若处有极值,求的单调递增区间;

2)是否存在实数,使在区间上的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求曲线在点处的切线方程;

)求函数的单调区间;

)若对任意的,都有成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分(满分10分),现将评分分为5组,如下表:

组别

满意度评分

[0,2)

[2,4)

[4,6)

[6,8)

[8,10]

频数

5

10

a

32

16

频率

0.05

b

0.37

c

0.16

(1)求表格中的a,b,c的值;

(2)估计用户的满意度评分的平均数;

(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,的中点,平面的中点.

1)证明:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

未使用节水龙头50天的日用水量频数分布表

日用

水量

频数

1

3

2

4

9

26

5

使用了节水龙头50天的日用水量频数分布表

日用

水量

频数

1

5

13

10

16

5

(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:

2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;

3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;

(2)①建立月总成本y与月产量x之间的回归方程;

②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?

(均精确到0.001)

附注:①参考数据:

②参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,圆C的直角坐标方程为,直线l的参数方程为(t为参数),射线OM的极坐标方程为.

1)求圆C和直线l的极坐标方程;

2)已知射线OM与圆C的交点为OP,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

同步练习册答案