精英家教网 > 高中数学 > 题目详情

【题目】设函数yfx)的定义域为D,若对任意的x1D,总存在x2D,使得fx1fx2)=1,则称函数fx)具有性质M.下列结论:①函数yx3x具有性质M;②函数y3x+5x具有性质M;③若函数ylog8x+2),x[0t]时具有性质M,则t510;④若y具有性质M,则a5.其中正确结论的序号是_____.

【答案】②③.

【解析】

对于,当时,不存在满足

对于,由于,所以具有性质

对于,由于时,,所以时必有,所以

对于,由于,所以可得.

对于,当时,不存在满足,故不正确;

对于,由于,所以,所以具有性质,故正确;

对于,由于为增函数,且时,,所以时必有,所以,故正确;

对于,由于,若y具有性质M,所以可得,故④不正确.

故答案为:②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:),经统计,树苗的高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于的为优质树苗.

(1)求图中的值;

(2)已知所抽取的这120株树苗来自于两个试验区,部分数据如下列联表:

试验区

试验区

合计

优质树苗

20

非优质树苗

60

合计

将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与两个试验区有关系,并说明理由;

(3)通过用分层抽样方法从试验区被选中的树苗中抽取5株,若从这5株树苗中随机抽取2株,求优质树苗和非优质树苗各有1株的概率.

附:参考公式与参考数据:

其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形,平面.

1)证明:平面

2)若与平面所成角为45°,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为美化校园,江苏省淮阴中学将一个半圆形的边角地改造为花园.如图所示,O为圆心,半径为1千米,点ABP都在半圆弧上,设∠NOP=POA=,∠AOB=,且.

1)请用分别表示线段NABM的长度;

2)若在花园内铺设一条参观线路,由线段NAABBM三部分组成,则当取何值时,参观线路最长?

3)若在花园内的扇形ONP和四边形OMBA内种满杜鹃花,则当取何值时,杜鹃花的种植总面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市201041—430日对空气污染指数的监测数据如(主要污染物为可吸入颗粒物):617670568191929175818867101103959177868382826479868575714945

样本频率分布表:

分组

频数

频率

[4151

2

[5161

1

[6171

4

[7181

6

[8191

10

[91101

[101111

2

1 完成频率分布表;

2)作出频率分布直方图;

3)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列{an},若从第二项起的每一项均大于该项之前的所有项的和,则称{an}P数列.

1)若{an}的前n项和Sn3n+2,试判断{an}是否是P数列,并说明理由;

2)设数列a1a2a3a10是首项为﹣1、公差为d的等差数列,若该数列是P数列,求d的取值范围;

3)设无穷数列{an}是首项为a、公比为q的等比数列,有穷数列{bn}{cn}是从{an}中取出部分项按原来的顺序所组成的不同数列,其所有项和分别为T1T2,求{an}P数列时aq所满足的条件,并证明命题a0T1T2,则{an}不是P数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由我国引领的5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G经济产出所做的预测.结合下图,下列说法正确的是(

A.5G的发展带动今后几年的总经济产出逐年增加

B.设备制造商的经济产出前期增长较快,后期放缓

C.设备制造商在各年的总经济产出中一直处于领先地位

D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,为边的中点,以为折痕把折起,使点到达点的位置,且使平面平面.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对由这两个数字组成的字符串,作如下规定:按从左向右的顺序,当第一个子串“”的最后一个所在数位是第(,且)位,则称子串“”在第位出现;再继续从第位按从左往右的顺序找子串“”,若第二个子串“”的最后一个所在数位是第位(其中),则称子串“”在第位出现;……;如此不断地重复下去.如:在字符串中,子串“”在第位和第位出现,而不是在第位和第位出现.记在位由组成的所有字符串中,子串“”在第位出现的字符串的个数为.

(1)求的值;

(2)求证:对任意的正整数,的倍数.

查看答案和解析>>

同步练习册答案