精英家教网 > 高中数学 > 题目详情
18.已知sinx•cosx>0,则x在一或三象限.

分析 由题意可得$\left\{\begin{array}{l}{sinx>0}\\{cosx>0}\end{array}\right.$或$\left\{\begin{array}{l}{sinx<0}\\{cosx<0}\end{array}\right.$,分别可得x的象限,综合可得.

解答 解:∵sinx•cosx>0,∴$\left\{\begin{array}{l}{sinx>0}\\{cosx>0}\end{array}\right.$或$\left\{\begin{array}{l}{sinx<0}\\{cosx<0}\end{array}\right.$,
当$\left\{\begin{array}{l}{sinx>0}\\{cosx>0}\end{array}\right.$时,x在第一象限;
当或$\left\{\begin{array}{l}{sinx<0}\\{cosx<0}\end{array}\right.$时,x在第三象限.
故答案为:一或三

点评 本题考查三角函数值的符号,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知点P为圆C:(x-2)2+(y-3)2=4上一动点,点A(4,0),且$\overrightarrow{AQ}$=$\frac{1}{3}$$\overrightarrow{AP}$,求动点Q的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知y=f(x)是定义在R上的偶函数,其对任意的x1,x2∈(-∞,0],都使(x2-x1)[f(x2)-f(x1)]<0成立,则当f(sinx)>f(cosx)时,x的取值范围(  )
A.(2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$),k∈ZB.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$),k∈Z
C.(2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈ZD.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an},满足a1=4,an+1=3an-4,(n∈N*),求该数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知全集U={x|x2<16且x∈N},集A={1,2},集B={2,3}则∁UA∩B={3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=3-2cosx,当x=2kπ(k∈Z)时,有最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,正方体ABCD-A1B1C1D1的棱长为1,P对角线BD1的三等分点,P到直线CC1的距离为$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,矩形ABCD的边长为6和4.□EFGH的顶点在矩形的边上,并且AH=CF=2,AE=CG=3.点P在FH上,并且S四边形AEPH=5,则S四边形PFCG=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=4{sin^2}(\frac{π}{4}+x)-2\sqrt{3}cos2x-1$,且$\frac{π}{4}≤x≤\frac{π}{2}$.
(1)求f(x)的最大值及最小值;
(2)若条件$p:f(x)=4{sin^2}(\frac{π}{4}+x)-2\sqrt{3}cos2x-1,\frac{π}{4}≤x≤\frac{π}{2}$;条件q:|f(x)-m|<2,且p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案