精英家教网 > 高中数学 > 题目详情
15、给出下列四个结论:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③函数f(x)=x-sinx(x∈R)有3个零点;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确结论的序号是
①④
(填上所有正确结论的序号)
分析:①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”,可由命题的否定的书写规则进行判断;
②“若am2<bm2,则a<b”的逆命题为真,可由不等式的运算规则进行判断;
③函数f(x)=x-sinx(x∈R)有3个零点,可由函数的图象进行判断;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x),可由函数单调性与导数的关系进行判断.
解答:解:①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”,此是一个正确命题;
②“若am2<bm2,则a<b”的逆命题为真,由于其逆命题是“若a<b,则am2<bm2”,当m=0时不成立,故逆命题为真不正确;
③函数f(x)=x-sinx(x∈R)有3个零点,由函数的图象知,此函数仅有一个零点,故命题不正解;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x),由于两个函数是一奇一偶,且在x>0时,f′(x)>0,g′(x)>0,故当x<0,,f′(x)>g′(x),成立,此命题是真命题.
综上①④是正解命题
故答案为①④
点评:本题考查命题的否定,函数的单调性与导数的关系,及不等式关系的运算,涉及到的知识点较多,解题的关键是对每个命题涉及的知识熟练掌握,且能灵活运用它们作出判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;②函数y=k3x(k>0)(k为常数)的图象可由函数y=3x的图象经过平移得到;③函数y=
1
2
+
1
2x-1
(x≠0)是奇函数且函数y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函数;④函数y=cos|x|是周期函数.其中正确结论的序号是
 
.(填写你认为正确的所有结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=
3
3
.给出下列四个结论:
①BF∥CE;
②CE⊥BD;
③三棱锥E-BCF的体积为定值;
④△BEF在底面ABCD内的正投影是面积为定值的三角形;
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正确结论的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)给出下列四个结论:
①命题''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,则a<b”的逆命题为真;
③已知直线l1:ax+2y-1=0,l1:x+by+2=0,则l1⊥l2的充要条件是
ab
=-2

④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f'(x)>0,g'(x)>0,则x<0时,f'(x)>g'(x).
其中正确结论的序号是
①④
①④
(填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知平面α、β、γ、和直线l,m,且l⊥m,α⊥γ,α∩γ=m,γ∩β=l;给出下列四个结论:①β⊥γ ②l⊥α③m⊥β;④α⊥β.其中正确的是(  )

查看答案和解析>>

同步练习册答案