已知函数,有下列4个结论:
①函数的图像关于轴对称;
②存在常数,对任意的实数,恒有成立;
③对于任意给定的正数,都存在实数,使得;
④函数的图像上存在无数个点,使得该函数在这些点处的切线与轴平行;
其中,所有正确结论的序号为 .
科目:高中数学 来源:2017届重庆巴蜀中学高三文12月月考数学试卷(解析版) 题型:解答题
已知函数,其中为自然对数的底数.
(Ⅰ)当时,求函数的单调区间和极值;
(Ⅱ)若,是函数的两个零点,设,证明:随着的增大而增大.
查看答案和解析>>
科目:高中数学 来源:2017届山东陵县一中高三文12月月考数学试卷(解析版) 题型:解答题
如图,椭圆 ()的离心率是,过点(,)的动直线与椭圆相交于,两点,当直线平行于轴时,直线被椭圆截得的线段长为.
⑴求椭圆的方程:
⑵已知为椭圆的左端点,问: 是否存在直线使得的面积为?若不存在,说明理由,若存在,求出直线的方程.
查看答案和解析>>
科目:高中数学 来源:2017届山东陵县一中高三文12月月考数学试卷(解析版) 题型:选择题
设函数的定义域为,若满足条件:存在,使在上的值域是,则成为“倍缩函数”,若函数为“倍缩函数”,则的范围是( )
A.(,) B.(,)
C.(,) D.(,)
查看答案和解析>>
科目:高中数学 来源:2017届山东陵县一中高三理12月月考数学试卷(解析版) 题型:选择题
若中心在原点,对称轴为坐标轴的双曲线的渐近线方程式为,则该双曲线的离心率为( )
A.或 B.或3
C. D.
查看答案和解析>>
科目:高中数学 来源:2017届江苏如东高级中学等四校高三12月联考数学试卷(解析版) 题型:解答题
如图,在平面直角坐标系中,椭圆:()的离心率为,点,分别为椭圆的上顶点、右顶点,过坐标原点的直线交椭圆于、两点,交于点,其中点在第一象限,设直线的斜率为.
(1)当时,证明直线平分线段;
(2)已知点,则:
①若,求;
②求四边形面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com