精英家教网 > 高中数学 > 题目详情

【题目】2019年春节前后,中国爆发新型冠状病毒(SARS-Cov-2)如图所示为124日至216日中国内地(除湖北以外的)感染新型冠状病毒新增人数的折线图,为了预测分析数据的变化规律,建立了与时间变量的不同时间段的两个线性回归模型.根据124日至23日的数据(时间变量的值依次为1234567891011)建立模型①:;根据24日至216日的数据(时间变量的值依次为12131415161718192021222324)建立模型②:.

1

24

1

25

1

26

1

27

1

28

1

29

1

30

1

31

2

1

2

2

2

3

1

2

3

4

5

6

7

8

9

10

11

332

174

298

337

448

593

690

737

720

648

926

2

4

2

5

2

6

2

7

2

8

2

9

2

10

2

11

2

12

2

13

2

14

2

15

2

16

12

13

14

15

16

17

18

19

20

21

22

23

24

830

741

693

683

559

464

431

377

377

299

259

211

160

1)求出两个回归直线方程;(计算结果取整数)

2)中国政府为了人民的生命安全,听取专家意见,了解了病毒信息,并迅速做出一系列的隔离防护措施,但新冠状病毒在世界范围内爆发时,某些欧美国家采取放任的态度,不治疗、不隔离、不检测,甚至不公布,请你用以上数据说明采取一系列措施的必要性,不采取措施的后果.

参考数据:

参考公式:.

【答案】1;(2)见解析.

【解析】

1)结合题设的参考数据及参考公式求回归方程即可;

2)利用回归方程,结合题设对应图像分析即可得解.

解:(1)当时,

,∴

,所以模型①:

时,

,所以模型②:

2)由图可观察出除湖北外由于我国的隔离防护等一系列措施的实施,从23日以后新冠状病毒新增确诊病例出现了拐点,逐渐减少,呈下降的趋势,效果显著;假如不采取措施,任由其发展,按模型①的规律发展下去,在216日,即时,新增确诊病例预测为,是采取措施后的十几倍,所以任何国家和政府都应把人民生命财产安全放在首位.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】居民消费价格指数,简称CPI,是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.一般来说,CPI的高低直接影响着国家的宏观经济调控措施的出台与力度,下图是国家统计局发布的我国2009年至2018年这十年居民消费价格指数的折线图.

则下列对该折线图分析正确的是(

A.这十年的居民消费价格指数的中位数为2013年的居民消费价格指数

B.这十年的居民消费价格指数的众数为2015年的居民消费价格指数

C.2009年~2012年这4年居民消费价格指数的方差小于2015年~2018年这4年居民消费价格指数的方差

D.2011年~2013年这3年居民消费价格指数的平均值大于2016年~2018年这3年居民消费价格指数的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研团队对例新冠肺炎确诊患者的临床特征进行了回顾性分析.其中名吸烟患者中,重症人数为人,重症比例约为名非吸烟患者中,重症人数为人,重症比例为.根据以上数据绘制列联表,如下:

吸烟人数

非吸烟人数

总计

重症人数

30

120

150

轻症人数

100

800

900

总计

130

920

1050

(1)根据列联表数据,能否在犯错误的概率不超过的前提下认为新冠肺炎重症和吸烟有关?

(2)已知每例重症患者平均治疗费用约为万元,每例轻症患者平均治疗费用约为万元.现有吸烟确诊患者20人,记这名患者的治疗费用总和为,求.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公比大于0的等比数列{an}中,已知a3a5a4,且a23a4a3成等差数列.

1)求{an}的通项公式;

2)已知Sna1a2an,试问当n为何值时,Sn取得最大值,并求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图一分别为的中点,上,且中点,将沿折起,沿折起,使得重合于一点(如图二),设为

1)求证:平面

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知口袋里装有4个大小相同的小球,其中两个标有数字1,两个标有数字2

1)从口袋里任意取一球,求取到标有数字2的球的概率;

2)第一次从口袋里任意取一球,放回口袋里后第二次再任意取一球,记第一次与第二次取到小球上的数字之和为.当为何值时,其发生的概率最大?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了有效地加强高中生自主管理能力,推出了一系列措施,其中自习课时间的自主管理作为重点项目,学校有关处室制定了高中生自习课时间自主管理方案”.现准备对该方案进行调查,并根据调查结果决定是否启用该方案,调查人员分别在各个年级随机抽取若干学生对该方案进行评分,并将评分分成七组,绘制成如图所示的频率分布直方图.

相关规则为①采用百分制评分,内认定为对该方案满意,不低于80分认定为对该方案非常满意,60分以下认定为对该方案不满意;②学生对方案的满意率不低于即可启用该方案;③用样本的频率代替概率.

1)从该校学生中随机抽取1人,求被抽取的这位同学非常满意该方案的概率,并根据频率分布直方图求学生对该方案评分的中位数.

2)根据所学统计知识,判断该校是否启用该方案,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是直角梯形,AB2CD2PD2,PC,且有PDAD,ADCD,ABCD.

1)证明:PD⊥平面ABCD

2)若四棱锥PABCD的体积为,求四棱锥PABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,平面平面分别在线段上,且是等腰直角三角形.

1)若,求证:平面

2,是否存在,使得与平面所成的角的正弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案