(本小题满分12分)
已知函数
(I)当时,求函数的图象在点A(0,)处的切线方程;
(II)讨论函数的单调性;
(Ⅲ)是否存在实数,使当时恒成立?若存在,求出实数;若不存在,请说明理由.
解(I).
(II)在,为增函数,在为减函数。
(Ⅲ)符合条件的实数不存在.
【解析】本试题主要是考查了导数在研究函数中的运用。
(1)运用了导数的几何意义求解曲线的切线方程问题。
(2)利用导数的运算,和导数与不等式的关系,求解得到函数的单调区间。
(3)对于不等式的恒成立问题可以转化为求解新函数的最值问题,来得到参数的取值范围的求解的这样的数学思想的运用。
解(I) 时,,
于是,,
所以函数的图象在点处的切线方程为
即. ………………………… ……………… 2分
(II)
=,
∵,∴ 只需讨论的符号. ……………… 4分
ⅰ)当>2时,>0,这时>0,所以函数在(-∞,+∞)上为增函数.
ⅱ)当= 2时,≥0,函数在(-∞,+∞)上为增函数.
……………… 6分
ⅲ)当0<<2时,令= 0,解得,.
当变化时,和的变化情况如下表:
|
+ |
0 |
- |
0 |
+ |
↗ |
极大值 |
↘ |
极小值 |
↗ |
∴在,为增函数,在为
减函数……………… 8分
(Ⅲ)当∈(1,2)时,∈(0,1).由(2)知在上是减函数,在上是增函数,故当∈(0,1)时,,所以当∈(0,1)时恒成立,等价于恒成立.……10分
当∈(1,2)时,,设,则,表明g(t) 在(0,1)上单调递减,于是可得,即∈(1,2)时恒成立,因此,符合条件的实数不存在. ……………… 12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com