已知,.
(1)若的单调减区间是,求实数a的值;
(2)若对于定义域内的任意x恒成立,求实数a的取值范围;
(3)设有两个极值点, 且.若恒成立,求m的最大值.
(1) .(2) (3)
解析试题分析:(1) 由题意得f(x)的导函数,然后利用单调区间判断即可;
(2) 由题意得,∴.构造新函数用单调区间判断即可;
(3) 由题意得,则
设, 则,
∴在内是增函数, ∴即,
∴,所以m的最大值为.
(1) 由题意得,则
要使的单调减区间是则,解得 ;
另一方面当时,
由解得,即的单调减区间是.
综上所述. (4分)
(2)由题意得,∴.
设,则 (6分)
∵在上是增函数,且时,.
∴当时;当时,∴在内是减函数,在内是增函数.∴ ∴, 即. (8分)
(3) 由题意得,则
∴方程有两个不相等的实根,且
又∵,∴,且 (10分)
设, 则, (12分)
∴在内是增函数, ∴即,
∴,所以m的最大值为. (14分)
考点:导数求单调区间;利用导数判断单调性求极值的方法;
科目:高中数学 来源: 题型:解答题
已知函数,其中a,b∈R
(1)当a=3,b=-1时,求函数f(x)的最小值;
(2)若曲线y=f(x)在点(e,f(e))处的切线方程为2x-3y-e=0(e=2.71828 为自然对数的底数),求a,b的值;
(3)当a>0,且a为常数时,若函数h(x)=x[f(x)+lnx]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数:f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1
(1)y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于三次函数,定义是的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数都关于点对称:
②存在三次函数,若有实数解,则点为函数的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数,则:
其中所有正确结论的序号是( ).
A.①②④ | B.①②③ | C.①③④ | D.②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)满足.
(1)求f(x)的解析式;
(2)讨论f(x)在区间(-3,3)上的单调性.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com