精英家教网 > 高中数学 > 题目详情
15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\sqrt{2}$,一条准线方程为x=$\frac{\sqrt{2}}{2}$,直线l与双曲线右支及双曲线的渐近线交于A、B、C、D四点,四个点的顺序如图所示.
(1)求该双曲线的方程;
(2)求证:|AB|=|CD|.

分析 (1)双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\sqrt{2}$,一条准线方程为x=$\frac{\sqrt{2}}{2}$,求出a,b,c,即可求得双曲线的方程;
(2)设直线为x=my+n代入双曲线方程,渐近线方程,用韦达定理,可得AD、BC的中点重合,即可得到结论.

解答 (1)解:∵双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\sqrt{2}$,一条准线方程为x=$\frac{\sqrt{2}}{2}$,
∴$\frac{c}{a}$=$\sqrt{2}$,$\frac{{a}^{2}}{c}$=$\frac{\sqrt{2}}{2}$,
∴a=1,c=$\sqrt{2}$,
∴b=1,
∴双曲线的方程为x2-y2=1;
(2)证明:设直线为x=my+n代入双曲线方程可得(m2-1)y2+6mny+n2-1=0
又双曲线的渐近线方程为x2-y2=0,直线方程代入可得(m2-1)y2+6mny+n2=0
∵直线l与双曲线右支及双曲线的渐近线交于A、B、C、D四点,
∴AD、BC的中点重合
∴|AB|=|CD|.

点评 本题考查直线与圆的位置关系,考查双曲线的方程,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,已知圆心为C(4,3)的圆经过原点O.
(Ⅰ)求圆C的方程;
(Ⅱ)设直线3x-4y+m=0与圆C交于A,B两点.若|AB|=8,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.通过实验数据可知,某液体的蒸发速度y(单位:升/小时)与液体所处环境的温度x(单位:℃)近似地满足函数关系y=ekx+b(e为自然对数的底数,k,b为常数).若该液体在0℃的蒸发速度是0.1升/小时,在30℃的蒸发速度为0.8升/小时,则该液体在20℃的蒸发速度为0.4升/小时.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若顶点在原点的抛物线的焦点与圆x2+y2-4x=0的圆心重合,则该抛物线的准线方程为x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点A是以F1F2为直径的圆与双曲线在第一象限的交点,延长AF2与双曲线交于点B,若|BF2|=3|AF2|,则此双曲线的离心率为(  )
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{10}}{3}$C.$\sqrt{10}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{kx+2,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,则下列关于函数y=f[f(x)]-$\frac{3}{2}$的零点个数的判断正确的是(  )
A.当k≥0时,有1个零点;当k<0时,有2个零点
B.当k≥0时,没有零点;当-$\frac{1}{2}$<k≤-$\frac{1}{4}$时,有3个零点,当k≤-$\frac{1}{2}$或-$\frac{1}{4}$<k<0有2个零点
C.当k≥0时,没有零点;当-$\frac{1}{2}$<k<0时,有3个零点,当k≤-$\frac{1}{2}$有2个零点
D.当k≥0时,没有零点;当-$\frac{1}{2}$≤k<-$\frac{1}{4}$时,有3个零点,当k<-$\frac{1}{2}$或-$\frac{1}{4}$≤k<0有2个零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正方形ABCD的坐标分別是(-1,0),(0,1),(1,0),(0,-1),动点M满足:kMB•kMD=-$\frac{1}{2}$,则动点M所在的轨迹方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1(x≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若2sin2x-5sin2y=1,求cos2x+siny的取值范围$[-\frac{\sqrt{5}}{5},\frac{3}{5}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(sinx)=π(x∈R),则f(cosx)=π.

查看答案和解析>>

同步练习册答案