精英家教网 > 高中数学 > 题目详情

如图, 四棱柱ABCDA1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD, .

   (Ⅰ) 证明: A1BD // 平面CD1B1;

   (Ⅱ) 求三棱柱ABDA1B1D1的体积.

 【答案】 (Ⅰ) ,见下.    

(Ⅱ)  1

【解析】 (Ⅰ) 设.

.

.(证毕)

(Ⅱ)  .

在正方形AB CD中,AO = 1 .

.

所以,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1和CC1上,AP=C1Q,则四棱锥B-APQC的体积为(  )
A、
V
2
B、
V
3
C、
V
4
D、
V
5

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AA1⊥底面ABCD,AB=2,AA1=BC=4,∠ABC=60°,点E为BC中点,点F为B1C1中点.
(Ⅰ)求证:平面A1ED⊥平面A1AEF;
(Ⅱ)求三棱锥E-A1FD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:三棱柱ABC-A1B1C1中,AB=AC=BC=2,AA1=3,侧棱AA1⊥底面ABC,D为C1B的中点,P为AB边上的动点.
(1)若P为AB中点,求证:PD∥平面ACC1A1
(2)若DP⊥AB,求四棱锥P-ACC1A1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.
(Ⅰ)证明:平面A1AE⊥平面A1DE;
(Ⅱ)若DE=A1E,试求异面直线AE与A1D所成角的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试求二面角C-A1D-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.
(1)证明:平面A1AE⊥平面A1DE;
(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.

查看答案和解析>>

同步练习册答案