【题目】给出下列四个命题:
①中,是成立的充要条件;
②当时,有;
③已知 是等差数列的前n项和,若,则;
④若函数为上的奇函数,则函数的图象一定关于点成中心对称.其中所有正确命题的序号为___________.
【答案】①③
【解析】
①利用正弦定理可判断;②举反例即可判断;③利用等差数列等差中项计算可判断;
④根据奇函数的性质与函数图象平移可判断.
①在△ABC中,由正弦定理可得 , ∴sinA>sinBa>bA>B,因此A>B是sinA>sinB的充要条件,①正确;
②当1>x>0时,lnx<0,所以不一定大于等于2,②不成立;
③等差数列{an}的前n项和,若S7>S5,则S7-S5=a6+a7>0,S9-S3=a4+a5+…+a9=3(a6+a7)>0,因此S9>S3,③正确;
④若函数为R上的奇函数,则其图象关于(0,0)中心对称,而函数y=f(x)的图象是把y=f(x-)的图象向左平移个单位得到的,故函数y=f(x)的图象一定关于点F(-,0)成中心对称,④不正确.
综上只有①③正确.
科目:高中数学 来源: 题型:
【题目】(2016·桂林高二检测)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.
(1)A′C⊥BD.(2)∠BA′C=90°.
(3)CA′与平面A′BD所成的角为30°.
(4)四面体A′-BCD的体积为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面为平行四边形的四棱锥中,过点的三条棱PA、AB、AD两两垂直且相等,E,F分别是AC,PB的中点.
(Ⅰ)证明:EF//平面PCD;
(Ⅱ)求EF与平面PAC所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一二三等奖.现有某考场的两科考试成绩数据统计如下图所示,其中数学科目成绩为二等奖的考生有人.
(Ⅰ)求该考场考生中语文成绩为一等奖的人数;
(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的学生中各抽取人,进行综合素质测试,将他们的综合得分绘成茎叶图,求样本的平均数及方差并进行比较分析;
(Ⅲ)已知本考场的所有考生中,恰有人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取人进行访谈,求两人两科成绩均为一等奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C:为参数)和定点,,是曲线C的左,右焦点.
(Ⅰ)求经过点且垂直于直线的直线的参数方程;
(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求直线的极坐标方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com