精英家教网 > 高中数学 > 题目详情
12.为了调查中学生近视情况,某校150名男生中有80名近视,140名女生中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力(  )
A.平均数B.方差C.回归分析D.独立性检验

分析 这是一个独立性检验应用题,处理本题时要注意根据已知构建方程计算出表格中男性近视与女性近视,近视的人数,并填入表格的相应位置.根据列联表,及K2的计算公式,计算出K2的值,并代入临界值表中进行比较,不难得到答案.

解答 解:分析已知条件,易得如下表格.

 男生女生合计
近视8070150
不近视7070140
合计150140290
根据列联表可得:K2,再根据与临界值比较,
检验这些中学生眼睛近视是否与性别有关,
故利用独立性检验的方法最有说服力.
故选:D.

点评 独立性检验,就是要把采集样本的数据,利用公式计算K2的值,比较与临界值的大小关系,来判定事件A与B是否无关的问题.具体步骤:(1)采集样本数据.(2)由公式计算的K2值.(3)统计推断,当K2>3.841时,有95%的把握说事件A与B有关;当K2>6.635时,有99%的把握说事件A与B有关;当K2≤3.841时,认为事件A与B是无关的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若关于实数x的不等式|x-1|+|x-3|≤a2-2a-1的解集为∅,则实数a的取值范围是(  )
A.a<-1或a>3B.-1<a<3C.-1<a<2D.1<a<3

查看答案和解析>>

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(文)试卷(解析版) 题型:填空题

已知函数的图象与函数的图象关于直线对称,令,则关于函数有下列命题:

的图象关于原点对称;

为偶函数;

的最小值为0;

上为减函数.

其中正确命题的序号为____________.(注:将所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(理)试卷(解析版) 题型:解答题

设函数

(1)当时,求曲线处的切线方程;

(2)当时,设函数,若对于,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对某班40名高中学生是否喜欢数学课程进行问卷调查,将调查所得数据绘制成二维条形图如图所示.
(Ⅰ)根据图中相关数据完成以下2×2列联表,并计算有多大把握认为性别与是否喜欢数学有关系?
喜欢数学课程不喜欢数学课程总计
总计40
(Ⅱ)从该班喜欢数学的女生中随机选取2人,参加学校数学兴趣课程班,已知该班女生A喜欢数学课程,求女生A被选中的概率.
参考公式:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值附表:
P(K2≥k00.50.40.250.150.10.01
k00.4550.7081.3232.0722.7066.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据,计算得回归直线方程为$\hat y$=0.85x-0.25.由以上信息,得到下表中c的值为3.
天数t(天)34567
繁殖个数y(千个)2.5c44.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知在等差数列{an}中,a2=3,a6=11,记数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和为Sn,若Sn≤$\frac{m}{10}$对n∈N*恒成立,则正整数m的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=ex-lnx-2.
(1)当x>0时,求证:f(x)>0.
(2)当x≥1时,若不等式ex+$\frac{3}{2}$≥2ax+$\frac{3}{2}$-a≥lnx+2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}f(x+3),\;x<1\\{log_2}x,\;x≥1\end{array}$,则f(-1)的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案