精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的离心率为,且椭圆过点,记椭圆的左、右顶点分别为,点是椭圆上异于的点,直线与直线分别交于点.

(1)求椭圆的方程;

(2)过点作椭圆的切线,记,且,求的值.

【答案】(1)椭圆的方程为 (2)

【解析】试题分析:

(1)由题意求得 ,故椭圆的方程为.

(2)很明显直线的斜率存在,设出切线方程联立直线与椭圆的方程,结合韦达定理得到关于实数 的不等式组,结合不等式组的性质和题意讨论可得.

试题解析:

(1)依题意, ,解得

故椭圆的方程为.

(2)依题意, ,直线

,则.

直线的方程为,令,得点的纵坐标为

直线的方程为,令,得点的纵坐标为

由题知,椭圆在点处切线斜率存在,可设切线方程为

,得

,得

整理得:

代入上式并整理得,解得

所以点处的切线方程为.

得,点的纵坐标为

,所以

所以

所以

代入上式, ,因为,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,DE⊥平面ABCD,AD∥BC,平面BCEF∩平面ADEF=EF,∠BAD=60°,AB=AD=2,DE=1.

(1)求证:BC∥EF;
(2)求三棱锥B﹣ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式组 表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离小于1的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的中心在原点,离心率为 ,右焦点到直线x+y+ =0的距离为2.
(1)求椭圆E的方程;
(2)椭圆下顶点为A,直线y=kx+m(k≠0)与椭圆相交于不同的两点M、N,当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(0,﹣4),且倾斜角为 ,圆C的极坐标方程为ρ=4cosθ.
(1)求直线l的参数方程和圆C的直角坐标方程;
(2)若直线l和圆C相交于A、B两点,求|PA||PB|及弦长|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)当 时,求的单调减区间;

(2)时,函数,若存在,使得恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1.

(1)求证:BC⊥平面PAC;
(2)若M是PC的中点,求二面角M﹣AD﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人6次测试的成绩(单位:分)记录如下:

甲 86 77 92 72 78 84

乙 78 82 88 82 95 90

(1)用茎叶图表示这两组数据,现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);

(2)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于85分的次数为,求的分布列和数学期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,

续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

保费

随机调查了该险种的400名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

频数

120

100

60

60

40

20

A为事件:“一续保人本年度的保费不高于基本保费”.的估计值;

(Ⅱ)B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的190%”.

的估计值;

(III)求续保人本年度的平均保费估计值.

查看答案和解析>>

同步练习册答案