【题目】已知椭圆: 的离心率为,且椭圆过点,记椭圆的左、右顶点分别为,点是椭圆上异于的点,直线与直线分别交于点.
(1)求椭圆的方程;
(2)过点作椭圆的切线,记,且,求的值.
【答案】(1)椭圆的方程为 (2)
【解析】试题分析:
(1)由题意求得, , ,故椭圆的方程为.
(2)很明显直线的斜率存在,设出切线方程,联立直线与椭圆的方程,结合韦达定理得到关于实数 的不等式组,结合不等式组的性质和题意讨论可得.
试题解析:
(1)依题意, ,解得, , ,
故椭圆的方程为.
(2)依题意, , ,直线,
设,则.
直线的方程为,令,得点的纵坐标为;
直线的方程为,令,得点的纵坐标为;
由题知,椭圆在点处切线斜率存在,可设切线方程为,
由,得,
由,得,
整理得: ,
将, 代入上式并整理得,解得,
所以点处的切线方程为.
令得,点的纵坐标为,
设,所以,
所以,
所以,
将代入上式, ,因为,所以.
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDEF中,DE⊥平面ABCD,AD∥BC,平面BCEF∩平面ADEF=EF,∠BAD=60°,AB=AD=2,DE=1.
(1)求证:BC∥EF;
(2)求三棱锥B﹣ADE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的中心在原点,离心率为 ,右焦点到直线x+y+ =0的距离为2.
(1)求椭圆E的方程;
(2)椭圆下顶点为A,直线y=kx+m(k≠0)与椭圆相交于不同的两点M、N,当|AM|=|AN|时,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过点P(0,﹣4),且倾斜角为 ,圆C的极坐标方程为ρ=4cosθ.
(1)求直线l的参数方程和圆C的直角坐标方程;
(2)若直线l和圆C相交于A、B两点,求|PA||PB|及弦长|AB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1.
(1)求证:BC⊥平面PAC;
(2)若M是PC的中点,求二面角M﹣AD﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人6次测试的成绩(单位:分)记录如下:
甲 86 77 92 72 78 84
乙 78 82 88 82 95 90
(1)用茎叶图表示这两组数据,现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(2)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于85分的次数为,求的分布列和数学期望及方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,
续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | |
保费 |
随机调查了该险种的400名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | |
频数 | 120 | 100 | 60 | 60 | 40 | 20 |
(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求的估计值;
(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的190%”.
求的估计值;
(III)求续保人本年度的平均保费估计值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com