精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C)经过点,离心率为分别为椭圆的左、右焦点.

1)求椭圆C的标准方程;

2)若点)在椭圆C上,求证;直线与直线关于直线l对称.

【答案】12)见解析

【解析】

1)将点代入椭圆方程,由离心率得到关系,结合,即可求解;

2)若,根据椭圆的对称性即可得证,若,只需证明关于直线l的对称点在直线上,根据点关于直线对称关系求出点坐标,而后证明三点共线,即可证明结论.

1)解:由题意知可得

所以椭圆C的标准方程为.

2)证明:若,则

此时直线与直线关于直线l对称.

关于直线l的对称点为

,则

要证直线与直线关于直线l对称,只需证QP三点共线,

即证,即证

因为

综上,直线与直线关于直线l对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,是边的中点.平面平面.线段上的点满足.

1)证明:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,讨论函数的单调性;

(Ⅱ)若方程没有实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形平面是棱上的一点.

1)证明:平面平面

2)若的中点,,且二面角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了调查小区成年居民对环境治理情况的满意度(满分按100计),随机对20名六十岁以上的老人和20名十八岁以上六十岁以下的中青年进行了不记名的问卷调查,得到了如下统计结果:

1:六十岁以上的老人对环境治理情况的满意度与频数分布表

满意度

人数

1

5

6

5

3

2:十八岁以上六十岁以下的中青年人对环境治理情况的满意度与频数分布表

满意度

人数

2

4

8

4

2

3

满意度小于80

满意度不小于80

合计

六十岁以上老人人数

十八岁以上六十岁以下的中青年人人数

合计

1)若该小区共有中青年人500人,试估计其中满意度不少于80的人数;

2)完成表3列联表,并回答能否有的把握认为小区成年居民对环境治理情况的满意度与年龄有关

3)从表3的六十岁以上的老人满意度小于80”满意度不小于80”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取3人,求至少有两人满意小于80的概率.

附:,其中.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,则下列结论正确的是(  )

A. S2 016=-2 016,a2 013>a4

B. S2 016=2 016,a2 013>a4

C. S2 016=-2 016,a2 013<a4

D. S2 016=2 016,a2 013<a4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆C(ab0)的离心率为.且经过点(1)AB分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆CDE两点(其中Dx轴上方).

1)求椭圆C的标准方程;

2)若AEFBDF的面积之比为17,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面为菱形的四棱柱中,平面.

1)证明:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数,aR).在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C的极坐标方程为.

1)若点A(04)在直线l上,求直线l的极坐标方程;

2)已知a>0,若点P在直线l上,点Q在曲线C上,若|PQ|最小值为,求a的值.

查看答案和解析>>

同步练习册答案