【题目】【2017广东佛山二模】已知椭圆:()的焦距为4,左、右焦点分别为、,且与抛物线:的交点所在的直线经过.
(Ⅰ)求椭圆的方程;
(Ⅱ)分别过、作平行直线、,若直线与交于,两点,与抛物线无公共点,直线与交于,两点,其中点,在轴上方,求四边形的面积的取值范围.
【答案】(Ⅰ);(Ⅱ).
【解析】试题分析:(I)由焦距可得,故椭圆与抛物线交点坐标为,利用椭圆的定义求得,利用解得,由此求得椭圆的方程;(II)设出直线的方程,联立直线的方程和抛物线的方程,利用判别式小于零求得的取值范围.联立直线的方程和椭圆的方程,写出韦达定理,写出的弦长,求得两条直线的距离,代入面积公式,化简后利用基本不等式求取值范围.
试题解析:
(Ⅰ)依题意得,则,.
所以椭圆与抛物线的一个交点为,
于是,从而.
又,解得
所以椭圆的方程为.
(Ⅱ)依题意,直线的斜率不为0,设直线:,
由,消去整理得,由得.
由,消去整理得,
设,,则,,
所以,
与间的距离(即点到的距离),
由椭圆的对称性知,四边形为平行四边形,
故,
令,则,
所以四边形的面积的取值范围为.
科目:高中数学 来源: 题型:
【题目】为迎接“双十一”活动,某网店需要根据实际情况确定经营策略.
(1)采购员计划分两次购买一种原料,第一次购买时价格为a元/个,第二次购买时价格为b元/个(其中a≠b).该采购员有两种方案:方案甲:每次购买m个;方案乙:每次购买n元.请确定按照哪种方案购买原料平均价格较小.
(2)“双十一”活动后,网店计划对原价为100元的商品两次提价,现有两种方案:方案丙:第一次提价p,第二次提价q;方案丁:第一次提价 ,第二次提价 ,(其中p≠q)请确定哪种方案提价后价格较高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣1(a>0,且a≠1),当x∈(0,+∞)时,f(x)>0,且函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是( )
A.(1,+∞)
B.
C.(1,3]
D.(1,5]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A=[a﹣3,a],函数 (﹣2≤x≤5)的单调减区间为集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )
A.588
B.480
C.450
D.120
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com