精英家教网 > 高中数学 > 题目详情

【题目】【2017广东佛山二模】已知椭圆)的焦距为4,左、右焦点分别为,且与抛物线的交点所在的直线经过.

(Ⅰ)求椭圆的方程;

(Ⅱ)分别过作平行直线,若直线交于两点,与抛物线无公共点,直线交于两点,其中点轴上方,求四边形的面积的取值范围.

【答案】(Ⅰ);(Ⅱ).

【解析】试题分析:(I)由焦距可得,故椭圆与抛物线交点坐标为,利用椭圆的定义求得,利用解得,由此求得椭圆的方程;(II)设出直线的方程,联立直线的方程和抛物线的方程,利用判别式小于零求得的取值范围.联立直线的方程和椭圆的方程,写出韦达定理,写出的弦长,求得两条直线的距离,代入面积公式,化简后利用基本不等式求取值范围.

试题解析:

(Ⅰ)依题意得,则.

所以椭圆与抛物线的一个交点为

于是,从而.

,解得

所以椭圆的方程为.

(Ⅱ)依题意,直线的斜率不为0,设直线

,消去整理得,由.

,消去整理得

,则

所以

间的距离(即点的距离),

由椭圆的对称性知,四边形为平行四边形,

,则

所以四边形的面积的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣6x+5,x∈R.
(1)求f(x)的单调区间和极值;
(2)求曲线f(x)过点(1,0)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接“双十一”活动,某网店需要根据实际情况确定经营策略.
(1)采购员计划分两次购买一种原料,第一次购买时价格为a元/个,第二次购买时价格为b元/个(其中a≠b).该采购员有两种方案:方案甲:每次购买m个;方案乙:每次购买n元.请确定按照哪种方案购买原料平均价格较小.
(2)“双十一”活动后,网店计划对原价为100元的商品两次提价,现有两种方案:方案丙:第一次提价p,第二次提价q;方案丁:第一次提价 ,第二次提价 ,(其中p≠q)请确定哪种方案提价后价格较高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣1(a>0,且a≠1),当x∈(0,+∞)时,f(x)>0,且函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是( )
A.(1,+∞)
B.
C.(1,3]
D.(1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A=[a﹣3,a],函数 (﹣2≤x≤5)的单调减区间为集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,A,B是锐角,c=10,且
(1)证明角C=90°;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为(

A.588
B.480
C.450
D.120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α是第三象限角,且sinα=﹣
(1)求tanα与tan(α﹣ )的值;
(2)求cos2α的值.

查看答案和解析>>

同步练习册答案