【题目】已知函数()在区间(0,)上至多取到两次最大值,且在区间(,)上不单调,则满足条件的的个数是( )
A. 6 B. 7 C. 8 D. 9
【答案】D
【解析】
因为函数在区间(0,)上至多取到两次最大值,所以≤2T+=,∴ω≤.经验证可知:ω可取4,6,7,8,9,10,11,12,13共9个值.
因为∈(0,),所以∈(0,),
又因为函数在区间(0,)上至多取到两次最大值,
所以,解得,
当∈(,)时,∈(,)
=1时,在(,)上递增,不符合题意;
=2时,在(,)上递减,不符合题意;
=3时,在(,)上递减,不符合题意;
ω=4时,在(,)上先减后增,符合题意;
ω=5时,在(,)上递增,不符合题意;
ω=6时,在(,)上先增后减,不单调,符合题意;
ω=7时,在(,)上不单调,符合题意;
同理可得ω=8,9,10,11,12,13时均符合题意.
故满足条件的ω有9个
故选:D.
科目:高中数学 来源: 题型:
【题目】设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣ )=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,倾斜角为α的直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρcos2θ-4sin θ=0.
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)已知点P(1,0).若点M的极坐标为,直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入种黄瓜的年收入与投入(单位:万元)满足.设甲大棚的投入为(单位:万元),每年两个大棚的总收益为(单位:万元)
(1)求的值;
(2)试问如何安排甲、乙两个大棚的投入,才能使总收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均不为零的数列{an},定义向量 , ,n∈N* . 下列命题中真命题是( )
A.若?n∈N*总有 ∥ 成立,则数列{an}是等差数列
B.若?n∈N*总有 ∥ 成立,则数列{an}是等比数列
C.若?n∈N*总有 ⊥ 成立,则数列{an}是等差数列
D.若?n∈N*总有 ⊥ 成立,则数列{an}是等比数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)在区间D上是增函数,且函数y=在区间D上是减函数,则称函数f(x)是区间D上的“H函数”.对于命题:
①函数f(x)=-x+是区间(0,1)上的“H函数”;
②函数g(x)=是区间(0,1)上的“H函数”.下列判断正确的是( )
A. 和均为真命题 B. 为真命题,为假命题
C. 为假命题,为真命题 D. 和均为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非零向量,满足(2-)⊥,集合A={x|x2+(||+||)x+||||=0}中有且仅有唯一一个元素.
(1)求向量,的夹角θ;
(2)若关于t的不等式|-t|<|-m|的解集为空集,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f(2-x)=f(x-1),且方程f(x)=x有两个相等的实根.
(1)求f(x)的解析式;
(2)设g(x)=kx+1,若F(x)=g(x)-f(x),求F(x)在[1,2]上的最小值;
(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[2m,2n],若存在,求出m,n的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com