精英家教网 > 高中数学 > 题目详情

【题目】如图所示的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A,B,点C为小正方形的顶点,且
(1)画出所有的向量 ;
(2)求| |的最大值与最小值.

【答案】
(1)解:画出所有的向量 如图所示.


(2)解:由(1)所画的图知,

①当点C位于点C1或C2时,| |取得最小值

②当点C位于点C5和C6时,| |取得最大值 .

∴| |的最大值为 ,最小值为 .


【解析】本题主要考查了向量的模、向量的几何表示,解决问题的关键是根据所给向量满足的几何关系进行作图计算即可.
【考点精析】关于本题考查的向量的几何表示,需要了解带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知下列四个命题:
①函数f(x)= x﹣lnx(x>0),则y=f(x)在区间( ,1)内无零点,在区间(1,e)内有零点;
②函数f(x)=log2(x+ ),g(x)=1+ 不都是奇函数;
③若函数f(x)满足f(x﹣1)=﹣f(x+1),且f(1)=2,则f(7)=﹣2;
④设x1、x2是关于x的方程|logax|=k(a>0且a≠1)的两根,则x1x2=1,
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法不正确的是

A.命题“对,都有”的否定为“,使得

B.的必要不充分条件

C. “,则 是真命题

D.甲乙两位学生参与数学模拟考试设命题是“甲考试及格是“乙考试及格则命题“至少有一位学生不及格”可表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知A为左顶点,F是左焦点,l交OA的延长线于点B,点P,Q在椭圆上,有PD⊥l于点D,QF⊥AO,则椭圆的离心率是① ; ② ; ③ ; ④ ; ⑤ 其中正确的是(

A.①②
B.①③④
C.②③⑤
D.①②③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年10月28日,经历了近半个世纪风雨的南京长江大桥真“累”了,终于停下来喘口气了,之前大桥在改善我们城市的交通状况方面功不可没.据相关数据统计,一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到280辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过30辆/千米时,车流速度为50千米/小时.研究表明,当30≤x≤280时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤280时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) f(x)=xv(x)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数mR

(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;

(Ⅱ)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某辆汽车以x km/h的速度在高速公路上匀速行驶考虑到高速公路行车安全要求60≤x≤120时,每小时的油耗所需要的汽油量,其中k为常数,若汽车以120km/h的速度行驶时,每小时的油耗为11.5L.

1k的值

2求该汽车每小时油耗的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式ax2+5x+b>0的解集是{x|2<x<3},则不等式bx2﹣5x+a>0的解集是(
A.{x|x<﹣3或x>﹣2}
B.{x|x<﹣ 或x>﹣ }
C.{x|﹣ <x<﹣ }
D.{x|﹣3<x<﹣2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C的中心在坐标原点,焦点在x轴上,该椭圆经过点 且离心率为
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案