精英家教网 > 高中数学 > 题目详情
已知f(x)的定义域是[0,4],则f(x+1)+f(x-1)的定义域
 
;f(x+1)的定义域是[0,4],则f(2x-1)的定义域为
 
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:(1)由题意得不等式组,解出即可;(2)先求出1≤x+1≤5,得到函数f(x)的定义域,从而1≤2x-1≤5,解出即可.
解答: 解:(1)由题意得:
0≤x+1≤4
0≤x-1≤4
,解得:1≤x≤3;
(2)∵0≤x≤4,∴1≤x+1≤5,
∴1≤2x-1≤5,解得:1≤x≤3;
故答案为:[1,3],[1,3].
点评:本题考查了复合函数的定义域问题,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在(-∞,+∞)上的函数f(x)满足f(x+2)=f(x).
(1)若f(x)是偶函数,且当x∈(0,1)时,f(x)=x+1,求f(x)在(1,2)上的解析式;
(2)若f(1+x)=f(1-x),判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD是直角梯形,AD∥BC,AB⊥BC,AD=2,AB=3,BC=BE=7,△DCE是边长为6的正三角形.
(1)求证:平面DEC⊥平面BDE;
(2)求二面角C-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,菱形ABCD的边长为2,∠BAD=60°,M为AB边上不与端点重合的动点,且CM与DA分别延长后交于点N,若以菱形的对角线所在直线为坐标轴建立平面直角坐标系,并设BM=2t (0<t<1).
(Ⅰ)试用t表示
DM
BN
,并求它们所成角的大小;
(Ⅱ)设f(t)=
DM
BN
,g(t)=at+4-2a(a>0),分别根据以下条件,求出实数a的取值范围:
①存在t1,t2∈(0,1),使得
2
f(t1)
=g(t2);
②对任意t1∈(0,1),恒存在t2∈(0,1),使得
2
f(t1)
=g(t2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(-1)=(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=an+2n+1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=-
1
4
,an=1-
1
an-1
(n>1),则a2014的值为(  )
A、-
1
4
B、5
C、
4
5
D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

若f′(x0)=-3,则
lim
h→∞
f(x0-3h)-f(x0)
h
=(  )
A、-3B、-6C、9D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=
 

查看答案和解析>>

同步练习册答案