精英家教网 > 高中数学 > 题目详情

【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

【答案】
(1)解:∵曲线C的极坐标方程为ρsin2α﹣2cosα=0,

∴ρ2sin2α=2ρcosα,

∴曲线C的直角坐标方程为y2=2x.


(2)直线l的参数方程 ,(t为参数,0<θ<π),

把直线的参数方程化入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,

设A,B两点对应的参数分别为t1,t2

,t1t2=﹣

|AB|=|t1﹣t2|=

= =

∴当 时,|AB|取最小值2.


【解析】1、本题考查的是双曲线的极坐标方程,根据题意可得。
2、由直线的参数方程得到抛物线的方程,再转化成极坐标方程。设A,B两点对应的参数分别为t1,t2由题意可得|AB|=|t1﹣t2|
∴当 θ = π 2 时,|AB|取最小值2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知ABCD为平行四边形,∠A=60°,线段AB上点F满足AF=2FB,AB长为12,点E在CD上,EF∥BC,BD⊥AD,BD与EF相交于N.现将四边形ADEF沿EF折起,使点D在平面BCEF上的射影恰在直线BC上.

(Ⅰ)求证:BD⊥平面BCEF;
(Ⅱ)求折后直线DE与平面BCEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋时期的数学家秦九韶在他的著作《数书九章》中提出了计算多项式f(x)=anxn+an﹣1xn﹣1+…+a1x+a0的值的秦九韶算法,即将f(x)改写成如下形式:f(x)=(…((anx+an﹣1)x+an﹣2)x+…+a1)x+a0 , 首先计算最内层一次多项式的值,然后由内向外逐层计算一次多项式的值,这种算法至今仍是比较先进的算法,将秦九韶算法用程序框图表示如图,则在空白的执行框内应填入(  )

A.v=vx+ai
B.v=v(x+ai
C.v=aix+v
D.v=ai(x+v)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xex﹣ax(a∈R,a为常数),e为自然对数的底数.
(1)若函数f(x)的任意一条切线都不与y轴垂直,求a的取值范围;
(2)当a=2时,求使得f(x)+k>0成立的最小正整数k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是公差为d(d≠0)的等差数列,Sn为其前n项和,a1 , a2 , a5成等比数列.
(Ⅰ)证明S1 , S3 , S9成等比数列;
(Ⅱ)设a1=1,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间直角坐标系O﹣xyz中,已知A(2,0,0),B(0,2,0),C(0,0,0),P(0,1, ),则三棱锥P﹣ABC在坐标平面xOz上的正投影图形的面积为;该三棱锥的最长棱的棱长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合U={1,2,…,100},TU.对数列{an}(n∈N*),规定:
①若T=,则ST=0;
②若T={n1 , n2 , …,nk},则ST=a +a +…+a
例如:当an=2n,T={1,3,5}时,ST=a1+a3+a5=2+6+10=18.
已知等比数列{an}(n∈N*),a1=1,且当T={2,3}时,ST=12,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C的极坐标方程为ρ=2cosθ+2sinθ(0≤θ<2π),点M(1, ),以极点O为原点,以极轴为x轴的正半轴建立平面直角坐标系.已知直线l: (t为参数)与曲线C交于A,B两点,且|MA|>|MB|.
(1)若P(ρ,θ)为曲线C上任意一点,求ρ的最大值,并求此时点P的极坐标;
(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 经过 为坐标原点,线段 的中点在圆 上.
(1)求 的方程;
(2)直线 不过曲线 的右焦点 ,与 交于 两点,且 与圆 相切,切点在第一象限, 的周长是否为定值?并说明理由.

查看答案和解析>>

同步练习册答案