精英家教网 > 高中数学 > 题目详情
1.已知幂函数f(x)的图象过点(25,5).
(1)求f(x)的解析式;
(2)若函数g(x)=f(2-lgx),求g(x)的定义域和值域.

分析 (1)设出幂函数的解析式,利用图象上的点,求出米指数,即可得到f(x)的解析式;
(2)函数g(x)=f(2-lgx)=$\sqrt{2-lgx}$,根据使函数解析式有意义的原则,可得函数的定义域,值域.

解答 解:(1)设f(x)=xα
∵幂函数f(x)的图象过点(25,5).
∴f(25)=25α=5,
解得:a=$\frac{1}{2}$,
∴f(x)=${x}^{\frac{1}{2}}$
(2)∵函数g(x)=f(2-lgx)=${(2-lgx)}^{\frac{1}{2}}$=$\sqrt{2-lgx}$,
由2-lgx≥0得:x∈(0,100],
g(x)∈[0,+∞)
故函数的定义域为(0,100],
函数的值域为[0,+∞)

点评 本题考查的知识点是幂函数的图象和性质,对数函数的图象和性质,是函数图象和性质的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数y=x2-lgx在x∈[1,100]上的最大值与最小值的和是11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.试讨论函数f(x)=$\sqrt{4-{x}^{2}}$在[-2,2]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.x=log23,4y=$\frac{8}{3}$,则x+2y的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)与g(x)定义在R上,f(x)为奇函数,g(x)为偶函数,且有 f(x)+g(x)=$\frac{1}{x-1}$,求f(x),g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=10x,g(x)=2x,x0<0,则(  )
A.1>f(x0)>g(x0B.1>g(x0)>f(x0C.f(x0)>g(x0)>1D.g(x0)>f(x0)>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的奇函数.且当x<0时,f(x)=3x,则f(log94)的值为(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=(2-t)•2x+(t-3),其中t为常数,且t∈R.
(1)求f(0)的值;
(2)求函数g(x)=$\frac{f(x)}{{4}^{x}}$在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在R上的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1)时,f(x)=4x,则f(5.5)=64.

查看答案和解析>>

同步练习册答案