精英家教网 > 高中数学 > 题目详情
设等比数列{an}的前n项和为Sn.若S3+S6=2S9,求数列的公比q.
分析:先假设q=1,分别利用首项表示出前3、6、及9项的和,得到已知的等式不成立,矛盾,所以得到q不等于1,然后利用等比数列的前n项和的公式化简S3+S6=2S9得到关于q的方程,根据q不等于0和1,求出方程的解,即可得到q的值.
解答:解:若q=1,则有S3=3a1,S6=6a1,S9=9a1
但a1≠0,即得S3+S6≠2S9,与题设矛盾,q≠1.
又依题意S3+S6=2S9
可得
a1(1-q3)
1-q
+
a1(1-q6)
1-q
=
2a1(1-q9)
1-q

整理得q3(2q6-q3-1)=0.
由q≠0得方程2q6-q3-1=0.
(2q3+1)(q3-1)=0,
∵q≠1,q3-1≠0,
∴2q3+1=0
∴q=-
34
2
点评:本小题主要考查等比数列的基础知识,逻辑推理能力和运算能力,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若8a2+a5=0,则下列式子中数值不能确定的是(  )
A、
a5
a3
B、
S5
S3
C、
an+1
an
D、
Sn+1
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

12、设等比数列{an}的前n项和为Sn,巳知S10=∫03(1+2x)dx,S20=18,则S30=
21

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若S6:S3=3,则S9:S6=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若
S6
S3
=3,则
S9
S6
=(  )
A、
1
2
B、
7
3
C、
8
3
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n 项和为Sn,若
S6
S3
=3,则
S9
S3
=
7
7

查看答案和解析>>

同步练习册答案