精英家教网 > 高中数学 > 题目详情

已知等差数列的首项,公差,且第项、第项、第项分别是等比数列的第项、第项、第项.
(1)求数列的通项公式;
(2)设数列,均有成立,求

(1);(2)

解析试题分析:(1)由已知条件知成等比数列,联立可求得公差,又,所以;  又,知,所以数列的通项公式为
(2)写出当时的式子,两式相减得,整理得,所以.
试题解析:(1)
解得
 又
所以,等比数列的公比
(2) 时,
两式相减,得 
时,不满足上式 故

考点:数列的综合应用、分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等比数列的各项均为正数,且  
(1)求数列的通项公式;
(2)设,求数列的前n项和 
(3)在(2)的条件下,求使恒成立的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,等差数列满足
(1)求数列,数列的通项公式;
(2)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{}是等差数列,其中每一项及公差均不为零,设=0()是关于的一组方程.
(1)求所有这些方程的公共根;
(2)设这些方程的另一个根为,求证,,,…, ,…也成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

各项均为正数的数列{an}中,设,且
(1)设,证明数列{bn}是等比数列;
(2)设,求集合

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设正整数数列满足:,且对于任何,有
(1)求
(2)求数列的通项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知Sn是数列{an}的前n项和,且anSn-1+2(n≥2),a1=2.
(1)求数列{an}的通项公式.
(2)设bnTnbn+1bn+2+…+b2n,是否存在最大的正整数k,使得
对于任意的正整数n,有Tn恒成立?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,设
(Ⅰ)试写出数列的前三项;
(Ⅱ)求证:数列是等比数列,并求数列的通项公式
(Ⅲ)设的前项和为
求证:

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

数列满足:),且,若数列的前2011项之
和为2012,则前2012项的和等于          

查看答案和解析>>

同步练习册答案