精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,椭圆的离心率,且点在椭圆上.

(1)求椭圆的方程;

(2)若点都在椭圆上,且中点在线段(不包括端点)上.

①求直线的斜率;

②求面积的最大值.

【答案】1;(2)①;②.

【解析】

(1)根据题意,由离心率,且点在椭圆上,列出方程,计算的值,则椭圆方程可求;

(2)利用“点差法”求出所在直线的斜率,设出直线方程,与椭圆方程联立,由弦长公式求得弦长,再由点到直线的距离公式求出原点到直线的距离,代入三角形面积公式,利用基本不等式求得最值.

(1)离心率

代入椭圆方程,可得

解得

即有椭圆方程为

(2)①设

可得

相减可得

由题意可得

即为

可得直线的斜率为

②设直线的方程为

代入椭圆方程可得,

,解得

的距离为

即有面积为

当且仅当,即时,取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角梯形PBCD中, APD的中点,如下左图。将沿AB折到的位置,使,点ESD上,且,如下图。

1)求证: 平面ABCD

2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R的奇函数.

k值;

,试判断函数单调性并求使不等式恒成立的t的取值范围;

,且上的最小值为,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设X~N(μ1),Y~N(μ2),这两个正态分布密度曲线如图所示,下列结论中正确的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 对任意正数t,P(X≥t)≥P(Y≥t)

D. 对任意正数t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:

优秀

非优秀

总计

甲班

10

乙班

30

总计

已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是(  )

A. 列联表中的值为30,的值为35

B. 列联表中的值为15,的值为50

C. 根据列联表中的数据,若按的可靠性要求,能认为“成绩与班级有关系”

D. 根据列联表中的数据,若按的可靠性要求,不能认为“成绩与班级有关系”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处的切线与直线平行,求实数的值;

(2)试讨论函数在区间上最大值;

(3)若时,函数恰有两个零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线轴相交于点,点坐标为,过点作直线的垂线,交直线于点.记过三点的圆为圆

1)求圆的方程;

2)求过点与圆相交所得弦长为的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,设函数

(1)当时,求函数的单调区间;

(2)对任意均有的取值范围.

注:为自然对数的底数.

查看答案和解析>>

同步练习册答案