精英家教网 > 高中数学 > 题目详情
(1)写出与-1 840°角终边相同的角的集合M;

(2)把-1 840°的角写成k·360°+α(0°≤α<360°)的形式;

(3)若角α∈M,且α∈[-360°,360°],求角α.

解析:(1)M={α|α=k·360°-1 840°,k∈Z}.

(2)-1 840°=-6×360°+320°.

(3)∵α∈M,且-360°≤α≤360°,

∴-360°≤k·360°-1 840°≤360°.

∴1 480°≤k·360°≤2 200°,≤k≤.

∵k∈Z,∴k=5,6.故α=-40°或α=320°.

点评:在0°到360°角范围内找与任意一个角终边相同的角时,可根据实数的带余除法进行.因为任意一个角α均可写成k·360°+α1(0°≤α1<360°)的形式,所以与α角终边相同的角的集合也可写成{β|β=k·360°+α1,k∈Z}.如本题M={β|β=k·360°+320°,k∈Z}.由此确定[-360°,360°]范围内的角时,只需令k=-1和0即可.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数.
(1).写出ξ1、ξ2的分布列;
(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?

查看答案和解析>>

科目:高中数学 来源:设计选修数学-2-2苏教版 苏教版 题型:044

随着我国加入WTO,某地方企业决定从甲、乙两种产品中选择一种进行投资生产,打入国际市场,已知投资生产这两种产品的有关数据如下:(资金单位:万美元)

其中年固定成本与年生产件数无关,a为常数,且3≤a≤8.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其他因素的情况下:

(1)写出该厂分别投资生产甲、乙两种产品的年利润y1、y2与相应生产件数x(x∈N*)之间的函数关系式;

(2)分别求出投资生产这两种产品的最大年利润;

(3)如何选择投资方案可获较大年利润?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数.
(1).写出ξ1、ξ2的分布列;
(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?

查看答案和解析>>

科目:高中数学 来源:江西省高考真题 题型:解答题

某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5。若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6。实施每种方案,第二年与第一年相互独立。令ξi(i=1,2)表示方案i实施两年后柑桔产量达到灾前产量的倍数,
(1)写出ξ1、ξ2的分布列;
(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?

查看答案和解析>>

科目:高中数学 来源:2008年江西省高考数学试卷(理科)(解析版) 题型:解答题

某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数.
(1).写出ξ1、ξ2的分布列;
(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?

查看答案和解析>>

同步练习册答案