精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)定理:函数g(x)=ax+
b
x
(a、b是正常数)在区间(0,
b
a
)
上为减函数,在区间(
b
a
,+∞)
上为增函数.参考该定理,解决下面问题:是否存在实数m同时满足以下两个条件:①不等式f(x)-
m
2
>0
恒成立;②方程f(x)-m=0有解.若存在,试求出实数m的取值范围,若不存在,请说明理由.
分析:(1)根据函数f(x)是偶函数建立等式关系,化简可得log4
4x+1
4-x+1
=-2kx,从而x=-2kx对x∈R恒成立,即可求出k的值;
(2)先利用①不等式f(x)-
m
2
>0
恒成立等价于f(x)min
m
2
,建立不等关系求出m的范围,再根据②要使方程f(x)-m=0有解,转化成求函数的值域,将m分离出来得m=log4
4x+1
2x
=log4(2x+
1
2x
),然后利用所给定理求出m的范围,最后综合即可.
解答:解:(1)由函数f(x)是偶函数,可知f(x)=f(-x).
∴log4(4x+1)+kx=log4(4-x+1)-kx.…(2分)
即log4
4x+1
4-x+1
=-2kx,log44x=-2kx,…(4分)
∴x=-2kx对一切x∈R恒成立.∴k=-
1
2
.…(6分)
(利用f(-1)=f(1)解出k=-
1
2
,可得满分)
(2)由m=f(x)=log4(4x+1)-
1
2
x,
∴m=log4
4x+1
2x
=log4(2x+
1
2x
).…(8分)
设u=2x+
1
2x
,又设t=2x,则u=t+
1
t
,由定理,知umin=u(1)=2,…(10分)
∴m≥log42=
1
2
.故要使方程f(x)-m=0有解,m的取值范围为m≥
1
2
.…(12分)
f(x)-
m
2
>0?f(x)min
m
2
而f(x)min=
1
2

1
2
m
2
即m<1

综上所述,
1
2
≤m<1
…(14分)
点评:本题主要考查了函数奇偶性的应用,以及根的个数的判定和利用新定理等有关基础知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案