精英家教网 > 高中数学 > 题目详情

(本题满分14分)如图,在正方体ABCDA1B1C1D1中,EF为棱ADAB的中点.

(1)求证:EF∥平面CB1D1

(2)求证:平面CAA1C1⊥平面CB1D1

 

【答案】

(1)连结BD.在长方体中,对角线.又 EF为棱ADAB的中点, . . 又B1D1平面平面 EF∥平面CB1D1.(2)因为 在长方体中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1 AA1B1D1.又因为在正方形A1B1C1D1中,A1C1B1D1 B1D1⊥平面CAA1C1.   又因为B1D1平面CB1D1平面CAA1C1⊥平面CB1D1

【解析】

试题分析:(1)证明:连结BD.在长方体中,对角线.

 EF为棱ADAB的中点, .

. 又B1D1平面平面 EF∥平面CB1D1.

(2)因为 在长方体中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1 AA1B1D1.又因为在正方形A1B1C1D1中,A1C1B1D1

 B1D1⊥平面CAA1C1.   又因为B1D1平面CB1D1平面CAA1C1⊥平面CB1D1

考点:本题考查了空间中的线面关系

点评:证明立体几何问题常常利用几何方法,通过证明或找到线面之间的关系,依据判定定理或性质进行证明求解

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分)如图2,为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪,另外△AEF内部有一文物保护区域不能占用,经过测量AB=100m,BC=80m,AE=30m,AF=20m,应该如何设计才能使草坪面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

         如图,已知直三棱柱ABC—A1B1C1,E是棱CC1上动点,F是AB中点,

   (1)求证:

   (2)当E是棱CC1中点时,求证:CF//平面AEB1

   (3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题

(本题满分14分)如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.

(Ⅰ)若FDE的中点,求证:BE//平面ACF

(Ⅱ)求直线BE与平面ABCD所成角的正弦值

 

查看答案和解析>>

科目:高中数学 来源:2011年福建省高二上学期期末考试数学理卷 题型:解答题

(本题满分14分)如图,正方形的边长都是1,平面平面,点上移动,点上移动,若

(I)求的长;

(II)为何值时,的长最小;

(III)当的长最小时,求面与面所成锐二面角余弦值的大小.

 

查看答案和解析>>

科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题

(本题满分14分)如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分别是C1A和C1B的中点。

   (1)求证:EF//平面ABC;

   (2)求证:平面平面C1CBB1;

   (3)求异面直线AB与EB1所成的角。

 

查看答案和解析>>

同步练习册答案