精英家教网 > 高中数学 > 题目详情
2.如图所示,四边形ABCD是菱形,边长为2,∠BAD=60°,E为边AD的中点,点F在边AB上运动,点A关于直线EF的对称点为G,则线段CG的长度最小值为(  )
A.$\sqrt{7}-1$B.2C.$\sqrt{5}-1$D.$\sqrt{3}$

分析 由题意画出图形,可知当F在线段AB上运动时,A关于EF的对称点G到E的距离都等于定值EA=1,由余弦定理求出CE,用CF减去1得答案.

解答 解:如图,
当F在线段AB上运动时,A关于EF的对称点G到E的距离都等于定值EA=1,
∵ED=1,CD=2,∠CDE=120°,
∴$CE=\sqrt{{1}^{2}+{2}^{2}-2×1×2×cos120°}=\sqrt{7}$.
∴当A关于EF的对称点G落在EC上时,CG最小为$\sqrt{7}-1$.
故选:A.

点评 本题考查向量在几何中的应用,考查数学转化思想方法,考查了思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知圆M:x2+y2-2ax=0(a<0)截直线x-y=0所得线段的长度是$2\sqrt{2}$,则圆M与圆N:(x-2)2+(y-1)2=9的位置关系是(  )
A.内切B.相交C.外切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知c=$\sqrt{3}$,a2+b2-ab=3,
(1)求角C的大小;
(2)若sin A=$\frac{1}{2}$,求b边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xoy中,已知点F(0,1),直线l:y=-1,P为平面上的动点,且过点P作直线l的垂线,垂足为Q,满足:$\overrightarrow{QP}•\overrightarrow{QF}=\overrightarrow{FP}•\overrightarrow{FQ}$.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)在轨迹C上求一点M,使得M到直线y=x-3的距离最短,并求出最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.抛物线C的顶点为坐标原点O,焦点F在y轴正半轴上,准线l与圆x2+y2=4相切.
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知直线l和抛物线C交于点A,B,命题P:“若直线l过定点(0,1),则 $\overrightarrow{OA}$•$\overrightarrow{OB}$=-7”,请判断命题P的真假,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设ω>0,函数$y=sin(ωx+\frac{π}{3})+4$的图象向右平移$\frac{3π}{4}$个单位后与原图象重合,则ω的最小值是(  )
A.$\frac{3}{8}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.点P在抛物线y2=4x上运动,点Q在直线x-y+5=0上运动,直线l是抛物线的准线,设点P到直线l的距离为d,则d+|PQ|的最小值为(  )
A.4B.2$\sqrt{3}$C.3$\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C对应的三边长分别为a,b,c,c2-a(a-b)=b2
(1)求角C的值;
(2)若$cosA+cosB=\frac{{\sqrt{3}}}{2}$,且A<B,求角A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知方程x2+bx+c=0的两实根为-1和3,
(1)求b与 c;
(2)解不等式:x2+bx+c>0.

查看答案和解析>>

同步练习册答案