精英家教网 > 高中数学 > 题目详情
已知曲线C1的极坐标方程为ρ2cos2θ=8,曲线C2的极坐标方程为θ=
π
6
,曲线C1、C2相交于A、B两点.(p∈R)
(Ⅰ)求A、B两点的极坐标;
(Ⅱ)曲线C1与直线
x=1+
3
2
t
y=
1
2
t
(t为参数)分别相交于M,N两点,求线段MN的长度.
分析:(I)由
ρ2cos2θ=8
θ=
π
6
得:ρ2cos
π
3
=8
,即可得到ρ.进而得到点A,B的极坐标.
(II)由曲线C1的极坐标方程ρ2cos2θ=8化为ρ2(cos2θ-sin2θ)=8,即可得到普通方程为x2-y2=8.将直线
x=1+
3
2
t
y=
1
2
t
代入x2-y2=8,整理得t2+2
3
t-14=0
.进而得到|MN|.
解答:解:(Ⅰ)由
ρ2cos2θ=8
θ=
π
6
得:ρ2cos
π
3
=8

∴ρ2=16,
即ρ=±4.
∴A、B两点的极坐标为:A(4,
π
6
),B(-4,
π
6
)
B(4,
6
)

(Ⅱ)由曲线C1的极坐标方程ρ2cos2θ=8化为ρ2(cos2θ-sin2θ)=8,
得到普通方程为x2-y2=8.
将直线
x=1+
3
2
t
y=
1
2
t
代入x2-y2=8,
整理得t2+2
3
t-14=0

∴|MN|=
(2
3
)2-4×(-14)
1
=2
17
点评:本题考查了极坐标与直角坐标的互化公式、此时方程化为普通方程、弦长公式等基础知识与基本技能方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C1的极坐标方程为P=6cosθ,曲线C2的极坐标方程为θ=
π4
(p∈R),曲线C1,C2相交于A,B两点.
(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;
(Ⅱ)求弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=
π
4
(ρ∈R)
,曲线C1、C2相交于点A、B.则弦AB的长等于
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

极坐标系的极点是直角坐标系的原点,极轴为x轴正半轴.已知曲线C1的极坐标方程为ρ=2cosθ,曲线C2的参数方程为
x=2+tcosα
y=
3
+tsinα
(其中t为参数,α为字母常数且α∈[0,π))

(1)求曲线C1的直角坐标方程和曲线C2的普通方程;
(2)当曲线C1和曲线C2没有公共点时,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)圆O是△ABC的外接圆,过点C的圆的切线与AB的延长线交于点D,CD=2
7
,AB=BC=3,求BD以及AC的长.
(2)已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=
π
4
,曲线C1,C2相交于A,B两点
(I)把曲线C1,C2的极坐标方程转化为直角坐标方程;
(II)求弦AB的长度.
(3)已知a,b,c都是正数,且a,b,c成等比数列,求证:a2+b2+c2>(a-b+c)2

查看答案和解析>>

科目:高中数学 来源: 题型:

设极点与原点重合,极轴与x轴正半轴重合.已知曲线C1的极坐标方程是:ρcos(θ+
π
3
)=m
,曲线C2参数方程为:
x=2+2cosθ
y=2sinθ
(θ为参数),若两曲线有公共点,则实数m的取值范围是
[-1,3]
[-1,3]

查看答案和解析>>

同步练习册答案