精英家教网 > 高中数学 > 题目详情
对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f-1(x),且f-1([0,1))=[1,2),f-1((2,4])=[0,1).若方程f(x)-x=0有解x0,则x0=22.
因为g(I)={y|y=g(x),x∈I},f-1([0,1))=[1,2),f-1(2,4])=[0,1),
所以对于函数f(x),
当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)-x=0即f(x)=x无解;
当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)-x=0即f(x)=x无解;
所以当x∈[0,2)时方程f(x)-x=0即f(x)=x无解,
又因为方程f(x)-x=0有解x0,且定义域为[0,3],
故当x∈[2,3]时,f(x)的取值应属于集合(-∞,0)∪[1,2]∪(4,+∞),
故若f(x0)=x0,只有x0=2,
故答案为:2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f-1(x),且f-1([0,1))=[1,2),f-1((2,4])=[0,1).若方程f(x)-x=0有解x0,则x0=
2
2

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(上海卷解析版) 题型:填空题

对区间I上有定义的函数,记,已知定义域为的函数有反函数,且,若方程有解,则

 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f-1(x),且f-1([0,1))=[1,2),f-1((2,4])=[0,1).若方程f(x)-x=0有解x0,则x0=________.

查看答案和解析>>

科目:高中数学 来源:2013年上海市高考数学试卷(理科)(解析版) 题型:填空题

对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f-1(x),且f-1([0,1))=[1,2),f-1((2,4])=[0,1).若方程f(x)-x=0有解x,则x=   

查看答案和解析>>

同步练习册答案