精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

(Ⅰ)1证明两角和的余弦公式

      2由推导两角和的正弦公式.

(Ⅱ)已知△ABC的面积,且,求cosC.

本小题主要考察两角和的正、余弦公式、诱导公式、同角三角函数间的关系等基础知识及运算能力。

解:(1)①如图,在执教坐标系xOy内做单位圆O,并作出角αβ与-β,使角α的始边为Ox,交⊙O于点P1,终边交⊙OP2;角β的始边为OP2,终边交⊙OP3;角-β的始边为OP1,终边交⊙OP4.

P1(1,0),P2(cosα,sinα)

P3(cos(αβ),sin(αβ)),P4(cos(-β),sin(-β))  

P1P3P2P4及两点间的距离公式,得

[cos(αβ)-1]2sin2(αβ)=[cos(-β)-cosα]2+[sin(-β)-sinα]2

展开并整理得:2-2cos(αβ)=2-2(cosαcosβsinαsinβ)

cos(αβ)=cosαcosβsinαsinβ.……………………4分

②由①易得cos(α)=sinα,sin(α)=cosα

sin(αβ)=cos[-(αβ)]=cos[(α)+(-β)]

           =cos(α)cos(-β)-sin(α)sin(-β)

           =sinαcosβcosαsinβ……………………………………6分

(2)由题意,设△ABC的角BC的对边分别为bc

SbcsinA

bccosA=3>0 

A∈(0, ),cosA=3sinA

sin2Acos2A=1,∴sinA,cosA

由题意,cosB,得sinB

cos(AB)=cosAcosBsinAsinB 

cosCcos[π-(AB)]=-cos(AB)=-…………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案