精英家教网 > 高中数学 > 题目详情
下列四个函数中,既是奇函数又在定义域上单调递增的是(  )
A、y=x+1
B、y=x3
C、y=tanx
D、y=log2x
考点:函数奇偶性的判断,函数单调性的判断与证明
专题:计算题,函数的性质及应用
分析:运用常见函数的奇偶性和定义,注意首先判断定义域是否关于原点对称,即可得到既是奇函数又在定义域上单调递增的函数.
解答: 解:对于A.定义域为为R,f(-x)=-x+1≠-f(x),不为奇函数,则A不满足条件;
对于B.定义域为R,f(-x)=-x3=-f(x),则为奇函数,且f′(x)=3x2≥0,f(x)在R上递增,则B满足条件;
对于C.定义域为{x|x≠kπ+
π
2
,k∈Z},关于原点对称,tan(-x)=-tanx,则为奇函数,在(kπ-
π
2
,kπ+
π
2
)(k∈Z)上递增,则C不满足条件;
对于D.定义域为{x|x>0},不关于原点对称,不具奇偶性,则D不满足条件.
故选:B.
点评:本题考查函数的奇偶性的判断,考查常见函数的奇偶性和定义的运用,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,满足an+3Sn•Sn-1=0(n≥2,n∈N*),a1=
1
3
,则数列{an}的通项公式an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题是(  )
A、?x∈R,x2>0
B、?x0∈R,x02-x0+1=0
C、24是3的倍数且是9的倍数
D、“若b=0,则函数f(x)=ax2+bx+c为偶函数”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,+∞)上单调递减,且f(3)=0.若f(m+1)>0,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
2-2x
的定义域为(  )
A、[0,+∞)
B、[1,+∞)
C、(-∞,0]
D、(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(
π
2
+θ)=
1
7
,则cos(π-θ)等于(  )
A、-
1
7
B、
1
7
C、-
6
7
D、
6
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(-α)=
2
2
3
,α∈(-
π
2
,0),则tanα等于(  )
A、
2
4
B、-
2
4
C、2
2
D、-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

直线bx-ay+c=0(a>0)是曲线y=ln
1
x
在x=3处的切线,f(x)=a•2x+b•3x,若f(x+1)>f(x),则x的取值范围是(  )
A、(-2,1)
B、(1,+∞)
C、(-∞,1)
D、(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角坐标平面上一动点P到点F(1,0)的距离比它到直线x=-2的距离小1.求动点p的轨迹方程;直线l过点A(-1,0)且与点P的轨迹交于不同的两点M、N,若△MFN的面积为4,求直线l的方程.

查看答案和解析>>

同步练习册答案