精英家教网 > 高中数学 > 题目详情

已知双曲线的离心率,左、右焦点分别为,左准线为,能否在双曲线的左支上找到一点,使得的距离的等比中项?

不存在


解析:

设在左支上存在点,使

由双曲线的定义知,即

,解得

因在中有

解得

,与已知矛盾.

符合条件的点不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为(  )
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
10
-
y2
6
=1
D、
x2
6
-
y2
10
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率等于2,且与椭圆
x2
25
+
y2
9
=1有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率等于2,且与椭圆
x2
25
+
y2
9
=1
有相同的焦点,
(1)求椭圆的离心率;   
(2)求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=12
3
.该双曲线的标准方程为
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

同步练习册答案