精英家教网 > 高中数学 > 题目详情
5.对于函数f(x)=$\frac{\sqrt{3}}{2}$sin2x+sin2x(x∈R)有以下几种说法:
(1)($\frac{π}{12}$,0)是函数f(x)的图象的一个对称中心;
(2)函数f(x)的最小正周期是2π;
(3)函数f(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增.
(4)y=f(x)的一条对称轴$x=\frac{π}{3}$:其中说法正确的个数是(  )
A.0B.1C.2D.3

分析 函数f(x)=$\frac{\sqrt{3}}{2}$sin2x+sin2x=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1-cos2x}{2}$=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,分析函数的对称性,周期性和单调性,可得结论.

解答 解:函数f(x)=$\frac{\sqrt{3}}{2}$sin2x+sin2x=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1-cos2x}{2}$=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
当x=$\frac{π}{12}$时,sin(2x-$\frac{π}{6}$)=0,故($\frac{π}{12}$,$\frac{1}{2}$)是函数f(x)的图象的一个对称中心,故(1)错误;
函数f(x)的最小正周期是π,故(2)错误;
由2x-$\frac{π}{6}$∈[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ],k∈Z得:x∈[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ],k∈Z
当k=0时,[-$\frac{π}{6}$,$\frac{π}{3}$]是函数f(x)的一个单调递增区间,故(3)正确.
当$x=\frac{π}{3}$时,sin(2x-$\frac{π}{6}$)=1.故y=f(x)的一条对称轴$x=\frac{π}{3}$,故(4)正确.
故选:C

点评 本题以命题的真假判断与应用为载体,考查了和差角公式,降次升角公式,正弦型函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,平面四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且FA=FC.
(1)求证:AC⊥平面BDEF;
(2)求证:FC∥平面EAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义在R上的函数f(x)在(6,+∞)上为增函数,且函数y=f(x+6)为偶函数,则(  )
A.f(4)<f(7)B.f(4)>f(7)C.f(5)>f(7)D.f(5)<f(7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a+\overrightarrow b}|=\sqrt{7}$,$|{\overrightarrow a-\overrightarrow b}|=\sqrt{3}$,则$\overrightarrow a•\overrightarrow b$的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和直线x=-2的距离之和的最小值是(  )
A.$\sqrt{3}$B.$\sqrt{5}+1$C.2D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.从500件产品中随机抽取20件进行抽样,利用随机数表法抽取样本时,先将这500件产品按001,002,003,…,500进行编号,如果从随机数表的第1行第6列开始,从左往右依次选取三个数字,则选出来的第4个个体编号为(  )
1622  7794  3949  5443  5482  1737  9323  7887  3520  9643
8626  3491  6484  4217  5331  5724  5506  8877  0474  4767.
A.435B.482C.173D.237

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,PB⊥底面ABCD,底面ABCD为梯形,AD∥BC,AD⊥AB,且PB=AB=AD=3,BC=1.
(Ⅰ)若点F为PD上一点且PF=$\frac{1}{3}$PD,证明:CF∥平面PAB;
(Ⅱ)求二面角B-PD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2$\sqrt{3}$,PD=CD=2,则二面角A-PB-C的正切值为$\frac{\sqrt{15}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx+x2-ax+2(a∈R)有两个不同的零点x1,x2
(1)求实数a的取值范围.
(2)求证:x1+x2>2.
(3)求证:x1•x2>1.

查看答案和解析>>

同步练习册答案