精英家教网 > 高中数学 > 题目详情

已知甲箱中只放有x个红球与y个白球,乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别). 若甲箱从中任取2个球, 从乙箱中任取1个球.

(Ⅰ)记取出的3个球的颜色全不相同的概率为P,求当P取得最大值时的值;

(Ⅱ)当时,求取出的3个球中红球个数的期望.

 

【答案】

(I) .

(II)红球个数的分布列为

 

.

【解析】

试题分析:(I)由题意知

当且仅当时等号成立,所以,当取得最大值时.

(II)当时,即甲箱中有个红球与个白球,所以的所有可能取值为

,

所以红球个数的分布列为

 

于是.

考点:本题主要考查独立事件的概率计算,随机变量分布列及其数学期望,均值定理的应用。

点评:典型题,统计中的抽样方法,频率直方图,概率计算及分布列问题,是高考必考内容及题型。独立事件的概率的计算问题,关键是明确事件、用好公式。本题综合性较强,特别是与不等式相结合,有新意。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•杭州一模)已知甲箱中只放有x个红球与y个白球(x,y≥0且x+y=6),乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别).若甲箱从中任取2个球,从乙箱中任取1个球.
(Ⅰ)记取出的3个球的颜色全不相同的概率为P,求当P取得最大值时x,y的值;
(Ⅱ)当x=2时,求取出的3个球中红球个数ξ的期望E(ξ).

查看答案和解析>>

科目:高中数学 来源:杭州一模 题型:解答题

已知甲箱中只放有x个红球与y个白球(x,y≥0且x+y=6),乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别).若甲箱从中任取2个球,从乙箱中任取1个球.
(Ⅰ)记取出的3个球的颜色全不相同的概率为P,求当P取得最大值时x,y的值;
(Ⅱ)当x=2时,求取出的3个球中红球个数ξ的期望E(ξ).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省杭州市富阳市场口中学高二(下)3月月考数学试卷(理科)(解析版) 题型:解答题

已知甲箱中只放有x个红球与y个白球(x,y≥0且x+y=6),乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别).若甲箱从中任取2个球,从乙箱中任取1个球.
(Ⅰ)记取出的3个球的颜色全不相同的概率为P,求当P取得最大值时x,y的值;
(Ⅱ)当x=2时,求取出的3个球中红球个数ξ的期望E(ξ).

查看答案和解析>>

同步练习册答案