精英家教网 > 高中数学 > 题目详情
偶函数满足,当时, ,则关于的方程上解的个数是( )
A.1B.2C.3D.4
D  

试题分析:∵f(x-1)=f(x+1)∴f(x)=f(x+2),
∴原函数的周期T=2,又∵f(x)是偶函数,∴f(-x)=f(x),
又∵x∈[0,1]时,,函数的周期为2,
∴原函数的对称轴是x=1,且f(-x)=f(x+2)。
设y1=f(x) ,y2=,方程根的个数,即为函数y1=f(x) ,y2= y2=的图象交点的个数.
由以上条件,可画出y1=f(x) ,y2=的图象,

当x=时,y1>y2,当x=1时,y1<y2
故在(,1)上有一个交点.
结合图象可得在[0,3]上y1=f(x),y2=共有4个交点,
∴在[0,3]上,原方程有4个根,故选D.
点评:难题,本题综合考查函数的奇偶性、周期性、单调性,函数的图象,函数零点的概念,一次函数、指数函数的图象和性质。由已知条件确定函数的性质是解题的关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时, f (x)=.
(1)求f (x)在[-1, 1]上的解析式;  
(2)证明f (x)在(—1, 0)上时减函数;
(3)当λ取何值时, 不等式f (x)>λ在R上有解?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


设命题p:函数的定义域为R;命题q:不等式对任意恒成立.
(Ⅰ)如果p是真命题,求实数的取值范围;
(Ⅱ)如果命题“p或q”为真命题且“p且q”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有下列四个命题:
①函数是偶函数;
②函数的值域为
③已知集合,若,则的取值集合为
④集合,对应法则,则的映射;
你认为正确命题的序号为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是R上的奇函数,若对于,都有时,的值为  
A.B.C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数是定义在上的以为周期的偶函数,若,则实数的取值范围是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)证明:对于一切的实数x都有f(x)x;
(2)若函数存在两个零点,求a的取值范围
(3)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

建造一断面为等腰梯形的防洪堤(如图),梯形的腰与底边所角为60°,考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为m2,为了使堤的上面与两侧面的水泥用料最省,要求断面的外周长(梯形的上底BC与两腰长的和)最小.如何设计防洪堤,才能使水泥用料最省.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则,有的大小关系为
A.B.
C.D.不能确定

查看答案和解析>>

同步练习册答案