精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,短轴长为4.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点作两条直线,分别交椭圆两点(异于点).当直线的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理由.

【答案】(1) (2)见解析

【解析】

I)根据椭圆的离心率和短轴长列方程组,解方程组求得的值,进而求得椭圆方程.II)当直线的斜率存在时,设出直线的方程,根据化简得到表达式.联立直线的方程和椭圆的方程,写出韦达定理,并代入上面求得的表达式,化简后可求得的关系式,带回直线的方程,由此求得直线所过定点.当直线斜率不存在时,设直线的方程为,利用,求出的值,由此判断此时直线所过定点.

(Ⅰ)由题意知:.

解得,所以椭圆方程为.

(Ⅱ)当直线的斜率存在时,设直线方程为

,得,整理得

联立,消去,由题意知二次方程有两个不等实根.

代入.

整理得.

,∴,∴,即.

所以直线过定点.

当直线的斜率不存在时,设直线的方程为,其中.

,由,得,∴.

∴当直线的斜率不存在时,直线也过定点.

综上所述,直线恒过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线

(1)求曲线在点处的切线方程;

(2)求曲线过点的切线方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.杨辉三角中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的单调区间;

2)当,讨论的零点个数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.

其中正确命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3.从这8名运动员中随机选择4人参加比赛.

1)设A为事件选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会,求事件发生的概率;

2)设为选出的4人中种子选手的人数,求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)

1)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?

2)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)

3)现在有7个座位连成一排,仅安排4个男生就坐,怡好有两个空座位相邻的不同坐法共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是正方形ABCD的外接圆,P在劣弧AB(P不与A、B重合),DP分别交AO、AB于点Q、T, 在点P处的切线交DA的延长线于点E,劣弧BC的中点为F.

(1):何时F、T、E三点共线?请说明理由.

(2)求比值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆.

(1)若抛物线的焦点在圆上,且和圆 的一个交点,求

(2)若直线与抛物线和圆分别相切于点,求的最小值及相应的值.

查看答案和解析>>

同步练习册答案